ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for TeV DM evidence from Dwarf Irregular Galaxies with the HAWC Observatory

62   0   0.0 ( 0 )
 نشر من قبل Sergio Hern\\'andez-Cadena
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dynamics of dwarf irregular (dIrr) galaxies are observed to be dominated by dark matter (DM). Recently, the DM density distribution has been studied for 31 dIrrs. Their extended DM halo (Burket type profile) makes these objects good candidates for DM searches. Located in Puebla (Mexico), the High Altitude Water Cherenkov (HAWC) Observatory is an optimal in- strument to perform such DM searches, because of its large sky coverage (8.4 sr per day). We analyzed a set of two years of HAWC data and we found no significant DM signal from dIrr galaxies. We present the upper limits for DM annihilation cross-section with dIrr galaxies.



قيم البحث

اقرأ أيضاً

139 - A. Albert , R. Alfaro , C. Alvarez 2017
The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field of view observatory sensitive to 500 GeV - 100 TeV gamma rays and cosmic rays. It can also perform diverse indirect searches for dark matter (DM) annihilation and decay. A mong the most promising targets for the indirect detection of dark matter are dwarf spheroidal galaxies. These objects are expected to have few astrophysical sources of gamma rays but high dark matter content, making them ideal candidates for an indirect dark matter detection with gamma rays. Here we present individual limits on the annihilation cross section and decay lifetime for 15 dwarf spheroidal galaxies within the HAWC field-of-view, as well as their combined limit. These are the first limits on the annihilation cross section and decay lifetime using data collected with HAWC.
109 - Chang Dong Rho 2017
Compact binary systems can provide us with unique information on astrophysical particle acceleration and cosmic ray production. However, only five binary systems have ever been observed in TeV $gamma$ rays. The High Altitude Water Cherenkov (HAWC) Ob servatory has high uptime (duty cycle $>95%$) and a wide field of view (2 sr), making it well-suited for observing transient sources such as binaries. Using two years of data from HAWC, we have searched for TeV emission from three known TeV binary systems in the field of view and twenty-eight TeV binary candidates. We have searched the HAWC data for evidence of orbital modulation or flares from these objects, and report estimates of their $gamma$-ray flux.
The High Altitude Water Cherenkov Gamma-Ray Observatory (HAWC) continuously detects TeV photons and particles within its large field-of-view, accumulating every day a deeper exposure of two thirds of the sky. We analyzed 1523~days of HAWC live data a cquired over four and a half years, in a follow-up analysis of {138} nearby ($z<0.3$) active galactic nuclei from the {em Fermi} 3FHL catalog culminating within $40^circ$ of the zenith at Sierra Negra, the HAWC site. This search for persistent TeV emission used a maximum-likelihood analysis assuming intrinsic power-law spectra attenuated by pair production of gamma-ray photons with the extragalactic background light. HAWC clearly detects persistent emission from Mkn~421 and Mkn~501, the two brightest blazars in the TeV sky, at 65$sigma$ and 17$sigma$ level, respectively. {Weaker evidence for long-term emission is found for three other known very-high energy emitters:} the radiogalaxy M87 and the BL Lac objects VER~J0521+211 and 1ES~1215+303, the later two at $zsim 0.1$. We find evidence for collective emission from the set of 30 previously reported very high-energy sources that excludes Mkn~421 and Mkn~501 with a random probability $sim 10^{-5}$. Upper limits are presented for the sample under the power-law assumption and in the predefined (0.5-2.0), (2.0-8.0) and (8.0-32.0) TeV energy intervals.
317 - A. Albert , R. Alfaro , C. Alvarez 2020
The Earth is bombarded by ultra-relativistic particles, known as cosmic rays (CRs). CRs with energies up to a few PeV (=10$^{15}$ eV), the knee in the particle spectrum, are believed to have a Galactic origin. One or more factories of PeV CRs, or PeV atrons, must thus be active within our Galaxy. The direct detection of PeV protons from their sources is not possible since they are deflected in the Galactic magnetic fields. Hundred TeV $gamma$-rays from decaying $pi^0$, produced when PeV CRs collide with the ambient gas, can provide the decisive evidence of proton acceleration up to the knee. Here we report the discovery by the High Altitude Water Cherenkov (HAWC) observatory of the $gamma$-ray source, HAWC~J1825-134, whose energy spectrum extends well beyond 200 TeV without a break or cutoff. The source is found to be coincident with a giant molecular cloud. The ambient gas density is as high as 700 protons/cm$^3$. While the nature of this extreme accelerator remains unclear, CRs accelerated to energies of several PeV colliding with the ambient gas likely produce the observed radiation.
It has been shown that the dynamics of dwarf Irregular (dIrr) galaxies are dominated by dark matter. It is also observed that these galaxies have low star formation rates and metallicities, and no gamma-ray emission at ultra very high energies is exp ected. Because of their distance, dark matter content and vast number, dIrr galaxies are good targets to perform indirect dark matter searches by ground-based and wide field of view gamma-ray experiments, like HAWC. We analyzed data at the position of 31 dIrr galaxies within the HAWC field-of-view and no significant excess was found. Here, we present the individual and combined limits on the annihilation cross-section and decay lifetime of weakly interacting massive particles with a mass between 1 and 100 TeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا