ﻻ يوجد ملخص باللغة العربية
The use of entropy related concepts goes from physics, such as in statistical mechanics, to evolutionary biology. The Shannon entropy is a measure used to quantify the amount of information in a system, and its estimation is usually made under the frequentist approach. In the present paper, we introduce an fully objective Bayesian analysis to obtain this measures posterior distribution. Notably, we consider the Gamma distribution, which describes many natural phenomena in physics, engineering, and biology. We reparametrize the model in terms of entropy, and different objective priors are derived, such as Jeffreys prior, reference prior, and matching priors. Since the obtained priors are improper, we prove that the obtained posterior distributions are proper and their respective posterior means are finite. An intensive simulation study is conducted to select the prior that returns better results in terms of bias, mean square error, and coverage probabilities. The proposed approach is illustrated in two datasets, where the first one is related to the Achaemenid dynasty reign period, and the second data describes the time to failure of an electronic component in the sugarcane harvest machine.
We study a nonparametric Bayesian approach to estimation of the volatility function of a stochastic differential equation driven by a gamma process. The volatility function is modelled a priori as piecewise constant, and we specify a gamma prior on i
In this paper we propose to make Bayesian inferences for the parameters of the Lomax distribution using non-informative priors, namely the Jeffreys prior and the reference prior. We assess Bayesian estimation through a Monte Carlo study with 500 simu
For in vivo research experiments with small sample sizes and available historical data, we propose a sequential Bayesian method for the Behrens-Fisher problem. We consider it as a model choice question with two models in competition: one for which th
In many applications, the dataset under investigation exhibits heterogeneous regimes that are more appropriately modeled using piece-wise linear models for each of the data segments separated by change-points. Although there have been much work on ch
This paper is concerned with making Bayesian inference from data that are assumed to be drawn from a Bingham distribution. A barrier to the Bayesian approach is the parameter-dependent normalising constant of the Bingham distribution, which, even whe