ﻻ يوجد ملخص باللغة العربية
In many applications, the dataset under investigation exhibits heterogeneous regimes that are more appropriately modeled using piece-wise linear models for each of the data segments separated by change-points. Although there have been much work on change point linear regression for the low dimensional case, high-dimensional change point regression is severely underdeveloped. Motivated by the analysis of Minnesota House Price Index data, we propose a fully Bayesian framework for fitting changing linear regression models in high-dimensional settings. Using segment-specific shrinkage and diffusion priors, we deliver full posterior inference for the change points and simultaneously obtain posterior probabilities of variable selection in each segment via an efficient Gibbs sampler. Additionally, our method can detect an unknown number of change points and accommodate different variable selection constraints like grouping or partial selection. We substantiate the accuracy of our method using simulation experiments for a wide range of scenarios. We apply our approach for a macro-economic analysis of Minnesota house price index data. The results strongly favor the change point model over a homogeneous (no change point) high-dimensional regression model.
We study high-dimensional Bayesian linear regression with product priors. Using the nascent theory of non-linear large deviations (Chatterjee and Dembo,2016), we derive sufficient conditions for the leading-order correctness of the naive mean-field a
Spike-and-slab priors are popular Bayesian solutions for high-dimensional linear regression problems. Previous theoretical studies on spike-and-slab methods focus on specific prior formulations and use prior-dependent conditions and analyses, and thu
We study high-dimensional regression with missing entries in the covariates. A common strategy in practice is to emph{impute} the missing entries with an appropriate substitute and then implement a standard statistical procedure acting as if the cova
In this paper we develop an online statistical inference approach for high-dimensional generalized linear models with streaming data for real-time estimation and inference. We propose an online debiased lasso (ODL) method to accommodate the special s
Consider the problem of estimating parameters $X^n in mathbb{R}^n $, generated by a stationary process, from $m$ response variables $Y^m = AX^n+Z^m$, under the assumption that the distribution of $X^n$ is known. This is the most general version of th