ﻻ يوجد ملخص باللغة العربية
While high-resolution cross-correlation spectroscopy (HRCCS) techniques have proven effective at characterizing the atmospheres of transiting and non-transiting hot Jupiters, the limitations of these techniques are not well understood. We present a series of simulations of one HRCCS technique, which combines the cross-correlation functions from multiple epochs, to place temperature and contrast limits on the accessible exoplanet population for the first time. We find that planets approximately Saturn-size and larger within $sim$0.2 AU of a Sun-like star are likely to be detectable with current instrumentation in the $L$-band, a significant expansion compared with the previously-studied population. Cooler ($ rm T_{eq} leq 1000$ K) exoplanets are more detectable than suggested by their photometric contrast alone as a result of chemical changes which increase spectroscopic contrast. The $L$-band CH$_4$ spectrum of cooler exoplanets enables robust constraints on the atmospheric C/O ratio at $rm T_{eq} sim 900K$, which have proven difficult to obtain for hot Jupiters. These results suggest that the multi-epoch approach to HRCCS can detect and characterize exoplanet atmospheres throughout the inner regions of Sun-like systems with existing high-resolution spectrographs. We find that many epochs of modest signal-to-noise ($rm S/N_{epoch} sim 1500$) yield the clearest detections and constraints on C/O, emphasizing the need for high-precision near-infrared telluric correction with short integration times.
The main-sequence solar-type star HD69830 has an unusually large amount of dusty debris orbiting close to three planets found via the radial velocity technique. In order to explore the dynamical interaction between the dust and planets, we have perfo
ADI and SDI are well-established high-contrast imaging techniques, but their application is challenging for companions at small angular separations. The aim of this paper is to investigate to what extent adaptive-optics assisted, medium-resolution (R
Context. The atmosphere of exoplanets has been studied extensively in recent years, using numerical models to retrieve chemical composition, dynamical circulation or temperature from data. One of the best observational probes in transmission is the s
This study attempts to establish a link between the reasonably well known nature of the progenitor of SN2011fe and its surrounding environment. This is done with the aim of enabling the identification of similar systems in the vast majority of the ca
Exoplanet research has shown an incessant growth since the first claim of a hot giant planet around a solar-like star in the mid-1990s. Today, the new facilities are working to spot the first habitable rocky planets around low-mass stars as a forerun