ﻻ يوجد ملخص باللغة العربية
The main-sequence solar-type star HD69830 has an unusually large amount of dusty debris orbiting close to three planets found via the radial velocity technique. In order to explore the dynamical interaction between the dust and planets, we have performed multi-epoch photometry and spectroscopy of the system over several orbits of the outer dust. We find no evidence for changes in either the dust amount or its composition, with upper limits of 5-7% (1 $sigma$ per spectral element) on the variability of the {it dust spectrum} over 1 year, 3.3% (1 $sigma$) on the broad-band disk emission over 4 years, and 33% (1 $sigma$) on the broad-band disk emission over 24 years. Detailed modeling of the spectrum of the emitting dust indicates that the dust is located outside of the orbits of the three planets and has a composition similar to main-belt, C-type asteroids asteroids in our solar system. Additionally, we find no evidence for a wide variety of gas species associated with the dust. Our new higher SNR spectra do not confirm our previously claimed detection of H$_2$O ice leading to a firm conclusion that the debris can be associated with the break-up of one or more C-type asteroids formed in the dry, inner regions of the protoplanetary disk of the HD69830 system. The modeling of the spectral energy distribution and high spatial resolution observations in the mid-infrared are consistent with a $sim$ 1 AU location for the emitting material.
We perform a systematic search for high-redshift ($z >$ 1.5) extreme variability quasars (EVQs) using repeat spectra from the Sixteenth Data Release of Sloan Digital Sky Survey, which provides a baseline spanning up to $sim$18 yrs in the observed fra
This study attempts to establish a link between the reasonably well known nature of the progenitor of SN2011fe and its surrounding environment. This is done with the aim of enabling the identification of similar systems in the vast majority of the ca
Context. In multiple pre-main-sequence systems the lifetime of circumstellar disks appears to be shorter than around single stars, and the actual dissipation process may depend on the binary parameters of the systems. Aims. We report high spatial res
While high-resolution cross-correlation spectroscopy (HRCCS) techniques have proven effective at characterizing the atmospheres of transiting and non-transiting hot Jupiters, the limitations of these techniques are not well understood. We present a s
One of the main questions concerning Type Ia supernovae is the nature of the binary companion of the exploding white dwarf. A major discriminant between different suggested models is the presence and physical properties of circumstellar material at t