ﻻ يوجد ملخص باللغة العربية
Moire superlattices can induce correlated-electronic phases in twisted van-der-Waals materials. Strongly correlated quantum phenomena emerge, such as superconductivity and the Mott-insulating state. However, moire superlattices produced through artificial stacking can be quite inhomogeneous, which hampers the development of a clear correlation between the moire period and the emerging electrical and optical properties. Here we demonstrate in twisted-bilayer transition-metal dichalcogenides that low-frequency Raman scattering can be utilized not only to detect atomic reconstruction, but also to map out the inhomogeneity of the moire lattice over large areas. The method is established based on the finding that both the interlayer-breathing mode and moire phonons are highly susceptible to the moire period and provide characteristic fingerprints. We visualize microscopic domains with an effective twist-angle resolution of ~0.1{deg}. This ambient non-invasive methodology can be conveniently implemented to characterize and preselect high-quality areas of samples for subsequent device fabrication, and for transport and optical experiments.
We theoretically demonstrate that moire phonons at the lowest-energy bands can become chiral. A general symmetry analysis reveals that they originate from stacking configurations leading to an asymmetric interlayer binding energy that breaks the $C_{
Moire superlattices in van der Waals (vdW) heterostructures have given rise to a number of emergent electronic phenomena due to the interplay between atomic structure and electron correlations. A lack of a simple way to characterize moire superlattic
Different atomistic registry between the layers forming the inner and outer nanotubes can form one-dimensional (1D) van der Waals (vdW) moire superlattices. Unlike the two-dimensional (2D) vdW moire superlattices, effects of 1D vdW moire superlattice
The moire superlattice of misaligned atomic bilayers paves the way for designing a new class of materials with wide tunability. In this work, we propose a photonic analog of the moire superlattice based on dielectric resonator quasi-atoms. In sharp c
Moire superlattices in transition metal dichalcogenide (TMD) heterostructures can host novel correlated quantum phenomena due to the interplay of narrow moire flat bands and strong, long-range Coulomb interactions1-5. However, microscopic knowledge o