ﻻ يوجد ملخص باللغة العربية
The moire superlattice of misaligned atomic bilayers paves the way for designing a new class of materials with wide tunability. In this work, we propose a photonic analog of the moire superlattice based on dielectric resonator quasi-atoms. In sharp contrast to van der Waals materials with weak interlayer coupling, we realize the strong coupling regime in a moire superlattice, characterized by cascades of robust flat bands at large twist angles. Surprisingly, we find that these flat bands are characterized by a non-trivial band topology, the origin of which is the moire pattern of the resonator arrangement. The physical manifestation of the flat band topology is a robust one-dimensional conducting channel on the edge, protected by the reflection symmetry of the moire superlattice. By explicitly breaking the underlying reflection symmetry on the boundary terminations, we show that the first-order topological edge modes naturally deform into higher-order topological corner modes. Our work pioneers the physics of the moire superlattice beyond the weakly coupled regime and introduces a designable platform to control photonic topological insulator phases using moire patterns.
Two-dimensional photonic crystal membranes provide a versatile planar architecture for integrated photonics to control the propagation of light on a chip employing high quality optical cavities, waveguides, beamsplitters or dispersive elements. When
Moire superlattices in van der Waals (vdW) heterostructures have given rise to a number of emergent electronic phenomena due to the interplay between atomic structure and electron correlations. A lack of a simple way to characterize moire superlattic
We demonstrate reversible strain-tuning of a quantum dot strongly coupled to a photonic crystal cavity. We observe an average redshift of 0.45 nm for quantum dots located inside the cavity membrane, achieved with an electric field of 15 kV/cm applied
Atomically-thin layers of two-dimensional materials can be assembled in vertical stacks held together by relatively weak van der Waals forces, allowing for coupling between monolayer crystals with incommensurate lattices and arbitrary mutual rotation
We theoretically demonstrate that moire phonons at the lowest-energy bands can become chiral. A general symmetry analysis reveals that they originate from stacking configurations leading to an asymmetric interlayer binding energy that breaks the $C_{