ترغب بنشر مسار تعليمي؟ اضغط هنا

Origin of destruction of multiferroicity in Tb2BaNiO5 by Sr doping and its implications

94   0   0.0 ( 0 )
 نشر من قبل E. V. Sampathkumaran Professor
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The orthorhombic Haldane spin chain compound Tb2BaNiO5 (Neel order, TN1= 63 K) has been shown to be an exotic multiferroic system below (TN2) 25 K due to various fascinating features, pointing to a strong potential for the advancement of concepts in this field. In particular, the rare-earth ions play a direct decisive role unlike in many other well known multiferroic materials and there appears to be a critical canting angle, developing below TN2, subtended by Tb 4f and Ni 3d moments to trigger this cross coupling phenomenon. However, for a small replacement of Sr for Ba, viz. in Tb2Ba0.9Sr0.1NiO5, ferroelectricity was reported to get destroyed, but retaining magnetic features at (TN1) 55 K and (TN2) 14 K. In this article, we address the origin of suppression of multiferrocity in this Sr doped system through neutron diffraction studies and density functional theory calculations. We find that, unlike in Tb2BaNiO5, there is no pronounced change in the relative canting angle of the magnetic moments around TN2 and that the absolute value of this parameter down to 2 K fails to exceed the critical value noted for the parent, thereby explaining the origin of destruction of magnetoelectric coupling in the Sr doped material. This finding renders strong support to the proposal of possible existence of critical canting angle, at least in some cases, to induce multiferroicity, apart from serving as a route to engineer multiferroic materials for applications.



قيم البحث

اقرأ أيضاً

The Haldane spin-chain compound, Tb2BaNiO5, with two antiferromagnetic transitions, one at T1=63K, and the other at T2=25K, has been recently shown by us to be an exotic multiferroic below T2. Here, we report the results of our investigations of Sr d oping at the Ba site by magnetization, heat-capacity, magnetoelectric (MDE), and pyrocurrent measurements. An intriguing finding, which we stress, is that the ferroelectricity is lost even for a doping level of 10 atomic percent, though magnetic ordering prevails. The doped specimens however retain significant magnetodielectric behaviour, but with reduced magnitudes and qualitative changes with respect to the behaviour of the parent compound. This implies that ferroelectric order is also crucial for the anomalously large MDE in the parent compound, in addition to the role of 4f single-ion anisotropy.
Effects of Sr substitution at A-site in ordered perovskite Ba3-xSrxMnNb2O9 (x = 1 and 3) have been investigated using X-ray diffraction, magnetization, dielectric/magnetodielectric and neutron diffraction measurements. The parent compound Ba3MnNb2O9 having a large spin (S=5/2) is known to exhibit type-II multiferroic properties with quasi 2D triangular lattice antiferromagnetic ground state. A slight perturbation in exchange interaction due to substitution of smaller size isovalent ion at the A-site in Ba3-xSrxMnNb2O9 (x = 1 and 3) has been found to alter the ground states drastically and hence the multiferroicity. The crucial role of various fluctuations (quantum and/or thermal), weak lattice distortion induced by Sr-substitution and slight imbalance between different fluctuations in determining the ground states and the multiferroicity is discussed and compared with the results of smaller spin compounds (S = 1/2 or 1).
The semimetallic or semiconducting nature of the transition metal dichalcogenide 1$T$-TiSe$_2$ remains under debate after many decades mainly due to the fluctuating nature of its 2 $times$ 2 $times$ 2 charge-density-wave (CDW) phase at room-temperatu re. In this letter, using angle-resolved photoemission spectroscopy, we unambiguously demonstrate that the 1$T$-TiSe$_2$ normal state is semimetallic with an electron-hole band overlap of $sim$110 meV by probing the low-energy electronic states of the perturbed CDW phase strongly doped by alkali atoms. Our study not only closes a long-standing debate but also supports the central role of the Fermi surface for driving the CDW and superconducting instabilities in 1$T$-TiSe$_2$.
254 - G. Fabbris , D. Meyers , L. Xu 2016
We report the first empirical demonstration that resonant inelastic x-ray scattering (RIXS) is sensitive to emph{collective} magnetic excitations in $S=1$ systems by probing the Ni $L_3$-edge of La$_{2-x}$Sr$_x$NiO$_4$ ($x = 0, 0.33, 0.45$). The magn etic excitation peak is asymmetric, indicating the presence of single and multi spin-flip excitations. As the hole doping level is increased, the zone boundary magnon energy is suppressed at a much larger rate than that in hole doped cuprates. Based on the analysis of the orbital and charge excitations observed by RIXS, we argue that this difference is related to the orbital character of the doped holes in these two families. This work establishes RIXS as a probe of fundamental magnetic interactions in nickelates opening the way towards studies of heterostructures and ultra-fast pump-probe experiments.
We use the density functional theory and lattice dynamics calculations to investigate the properties of potassium superoxide KO$_2$ in which spin, orbital, and lattice degrees of freedom are interrelated and determine the low-temperature phase. After calculating phonon dispersion relations in the high-temperature tetragonal $I4/mmm$ structure, we identify a soft phonon mode leading to the monoclinic $C2/c$ symmetry and optimize the crystal geometry resulting from this mode. Thus we reveal a displacive character of the structural transition with the group-subgroup relation between the tetragonal and monoclinic phases. We compare the electronic structure of KO$_2$ with antiferromagnetic spin order in the tetragonal and monoclinic phases. We emphasize that realistic treatment of the electronic structure requires including the local Coulomb interaction $U$ in the valence orbitals of the O$^-_2$ ions. The presence of the `Hubbard $U$ leads to the gap opening at the Fermi energy in the tetragonal structure without orbital order but with weak spin-orbit interaction. We remark that the gap opening in the tetragonal phase could also be obtained when the orbital order is initiated in the calculations with a realistic value of $U$. Finally, we show that the local Coulomb interactions and the finite lattice distortion, which together lead to the orbital order via the Jahn-Teller effect, are responsible for the enhanced insulating gap in the monoclinic structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا