ترغب بنشر مسار تعليمي؟ اضغط هنا

Unveiling the Semimetallic Nature of 1$T$-TiSe$_2$ by Doping its Charge Density Wave

131   0   0.0 ( 0 )
 نشر من قبل Thomas Jaouen
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The semimetallic or semiconducting nature of the transition metal dichalcogenide 1$T$-TiSe$_2$ remains under debate after many decades mainly due to the fluctuating nature of its 2 $times$ 2 $times$ 2 charge-density-wave (CDW) phase at room-temperature. In this letter, using angle-resolved photoemission spectroscopy, we unambiguously demonstrate that the 1$T$-TiSe$_2$ normal state is semimetallic with an electron-hole band overlap of $sim$110 meV by probing the low-energy electronic states of the perturbed CDW phase strongly doped by alkali atoms. Our study not only closes a long-standing debate but also supports the central role of the Fermi surface for driving the CDW and superconducting instabilities in 1$T$-TiSe$_2$.



قيم البحث

اقرأ أيضاً

Substrate engineering provides an opportunity to modulate the physical properties of quantum materials in thin film form. Here we report that TiSe$_2$ thin films grown on TiO$_2$ have unexpectedly large electron doping that suppresses the charge dens ity wave (CDW) order. This is dramatically different from either bulk single crystal TiSe$_2$ or TiSe$_2$ thin films on graphene. The epitaxial TiSe$_2$ thin films can be prepared on TiO$_2$ via molecular beam epitaxy (MBE) in two ways: by conventional co-deposition using selenium and titanium sources, and by evaporating only selenium on reconstructed TiO$_2$ surfaces. Both growth methods yield atomically flat thin films with similar physical properties. The electron doping and subsequent suppression of CDW order can be explained by selenium vacancies in the TiSe$_2$ film, which naturally occur when TiO$_2$ substrates are used. This is due to the stronger interfacial bonding that changes the ideal growth conditions. Our finding provides a way to tune the chemical potential of chalcogenide thin films via substrate selection and engineering.
We report a low-temperature scanning tunneling microscopy study of the charge density wave (CDW) order in 1$T$-TiSe$_2$ and Cu$_{0.08}$TiSe$_2$. In pristine 1$T$-TiSe$_2$ we observe a long-range coherent commensurate CDW (C-CDW) order. In contrast, C u$_{0.08}$TiSe$_{2}$ displays an incommensurate CDW (I-CDW) phase with localized C-CDW domains separated by domain walls. Density of states measurements indicate that the domain walls host an extra population of fermions near the Fermi level which may play a role in the emergence of superconductivity in this system. Fourier transform scanning tunneling spectroscopy studies suggest that the dominant mechanism for CDW formation in the I-CDW phase may be electron-phonon coupling.
We investigate the thermal-driven charge density wave (CDW) transition of two cubic superconducting intermetallic systems Lu(Pt1-xPdx)2In and (Sr1-xCax)3Ir4Sn13 by means of x-ray diffraction technique. A detailed analysis of the CDW modulation superl attice peaks as function of temperature is performed for both systems as the CDW transition temperature T_CDW is suppressed to zero by an non-thermal control parameter. Our results indicate an interesting crossover of the classical thermal-driven CDW order parameter critical exponent from a three-dimensional universality class to a mean-field tendency, as T_CDW vanishes. Such behavior might be associated with presence of quantum fluctuations which influences the classical second-order phase transition, strongly suggesting the presence of a quantum critical point (QCP) at T_CDW = 0. This also provides experimental evidence that the effective dimensionality exceeds its upper critical dimension due to a quantum phase transition.
86 - A. Wegner , J. Zhao , J. Li 2018
The charge density wave (CDW) phase in 1$T$-TiSe$_2$ is investigated using angle resolved photoemission spectroscopy (ARPES) and neutron scattering measurements. Our ARPES results reveal a clear temperature dependence of the chemical potential of the system. They also demonstrate specific changes encountered by the Se 4$p$ valence and Ti 3$d$ conduction bands as the temperature of the system is decreased through $T_{text{CDW}}$. The valence band undergoes a downward shift, whereas the conduction band remains unaffected. The crystal structure in the CDW state shows a distinct split of the Ti-Se atomic correlations that are reminiscent of Jahn-Teller distortions, manifested in a breathing-type mode. The ARPES data together with the local structure analysis support a direct link between Jahn-Teller-like distortions and the CDW order in 1$T$-TiSe$_2$.
We investigate the microscopic mechanisms of the charge-density-wave (CDW) formation in a monolayer TiSe$_2$ using a realistic multiorbital $d$-$p$ model with electron-phonon coupling and intersite Coulomb (excitonic) interactions. First, we estimate the tight-binding bands of Ti $3d$ and Se $4p$ orbitals in the monolayer TiSe$_2$ on the basis of the first-principles band structure calculations. We thereby show orbital textures of the undistorted band structure near the Fermi level. Next, we derive the electron-phonon coupling using the tight-binding approximation and show that the softening occurs in the transverse phonon mode at the M point of the Brillouin zone. The stability of the triple-$q$ CDW state is thus examined to show that the transverse phonon modes at the M$_1$, M$_2$, and M$_3$ points are frozen simultaneously. Then, we introduce the intersite Coulomb interactions between the nearest-neighbor Ti and Se atoms that lead to the excitonic instability between the valence Se $4p$ and conduction Ti $3d$ bands. Treating the intersite Coulomb interactions in the mean-field approximation, we show that the electron-phonon and excitonic interactions cooperatively stabilize the triple-$q$ CDW state in TiSe$_2$. We also calculate a single-particle spectrum in the CDW state and reproduce the band folding spectra observed in photoemission spectroscopies. Finally, to clarify the nature of the CDW state, we examine the electronic charge density distribution and show that the CDW state in TiSe$_2$ is of a bond-type and induces a vortex-like antiferroelectric polarization in the kagome network of Ti atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا