ﻻ يوجد ملخص باللغة العربية
In this paper, we study a class of spatially coupled turbo codes, namely partially information- and partially parity-coupled turbo codes. This class of codes enjoy several advantages such as flexible code rate adjustment by varying the coupling ratio and the encoding and decoding architectures of the underlying component codes can remain unchanged. For this work, we first provide the construction methods for partially coupled turbo codes with coupling memory $m$ and study the corresponding graph models. We then derive the density evolution equations for the corresponding ensembles on the binary erasure channel to precisely compute their iterative decoding thresholds. Rate-compatible designs and their decoding thresholds are also provided, where the coupling and puncturing ratios are jointly optimized to achieve the largest decoding threshold for a given target code rate. Our results show that for a wide range of code rates, the proposed codes attain close-to-capacity performance and the decoding performance improves with increasing the coupling memory. In particular, the proposed partially parity-coupled turbo codes have thresholds within 0.0002 of the BEC capacity for rates ranging from $1/3$ to $9/10$, yielding an attractive way for constructing rate-compatible capacity-approaching channel codes.
Partially information coupled turbo codes (PIC-TCs) is a class of spatially coupled turbo codes that can approach the BEC capacity while keeping the encoding and decoding architectures of the underlying component codes unchanged. However, PIC-TCs hav
Spatially coupled serially concatenated codes (SC-SCCs) are a class of spatially coupled turbo-like codes, which have a close-to-capacity performance and low error floor. In this paper we investigate the impact of coupling memory, block length, decod
The performance of short polar codes under successive cancellation (SC) and SC list (SCL) decoding is analyzed for the case where the decoder messages are coarsely quantized. This setting is of particular interest for applications requiring low-compl
This paper considers a multi-antenna multicast system with programmable metasurface (PMS) based transmitter. Taking into account of the finite-resolution phase shifts of PMSs, a novel beam training approach is proposed, which achieves comparable perf
Non-orthogonal multiple-access (NOMA) is a leading technology which gain a lot of interest this past several years. It enables larger user density and therefore is suited for modern systems such as 5G and IoT. In this paper we examined different fram