ﻻ يوجد ملخص باللغة العربية
Quantum spin models with variable-range interactions can exhibit certain quantum characteristics that a short-ranged model cannot possess. By considering the quantum XYZ model whose interaction strength between different sites varies either exponentially or polynomially, we report the creation of long-range entanglement in dynamics both in the absence and presence of system-bath interactions. Specifically, during closed dynamics, we determine a parameter regime from which the system should start its evolution so that the resulting state after quench can produce a high time-averaged entanglement having low fluctuations. Both in the exponential and power-law decays, it occurs when the magnetic field is weak and the interactions in the z-direction are nonvanishing. When part of the system interacts with the bath repeatedly or is attached to a collection of harmonic oscillators along with dephasing noise in the z-direction, we observe that long-range entanglement of the subparts which are not attached with the environment remains constant with time in the beginning of the evolution, known as freezing of entanglement, thereby demonstrating a method to protect long-range entanglement. We find that the frozen entanglement content in any length and the time up to which freezing occurs called the freezing terminal to follow a complementary relation for all ranges of interactions. However, we find that for a fixed range of entanglement, there exists a critical value of interaction length which leads to the maximum freezing terminal.
The exchange interaction between identical qubits in a quantum information processor gives rise to unitary two-qubit errors. It is shown here that decoherence free subspaces (DFSs) for collective decoherence undergo Pauli errors under exchange, which
An interaction free evolving state of a closed bipartite system composed of two interacting subsystems is a generally mixed state evolving as if the interaction were a c-number. In this paper we find the characteristic equation of states possessing s
We investigate the time evolution of entanglement for bipartite systems of arbitrary dimensions under the influence of decoherence. For qubits, we determine the precise entanglement decay rates under different system-environment couplings, including
We make a comparative study of quadrature squeezing, photon-number distribution and Wigner function in a decayed quantum system. Specifically, for a field mode prepared initially in cat states interacting with a zero-temperature environment, we show
In this paper, we consider the decoherence patterns of a topological qubit made of two Majorana zero modes in the generic linear and circular motions in the Minkowski spacetime. We show that the reduced dynamics is exact without Markov approximation.