ﻻ يوجد ملخص باللغة العربية
We make a comparative study of quadrature squeezing, photon-number distribution and Wigner function in a decayed quantum system. Specifically, for a field mode prepared initially in cat states interacting with a zero-temperature environment, we show that the rate of reduction of the nonclassical effects in this system is proportional to the occurrence of the decoherence process.
Subradiance is the cooperative inhibition of the radiation by several emitters coupled to the same electromagnetic modes. It was predicted by Dicke in 1954 and only recently observed in cold atomic vapors. Here we address the question to what extent
We investigate the decay of entanglement, due to decoherence, of multi-qubit systems that are initially prepared in highly (in some cases maximally) entangled states. We assume that during the decoherence processes each qubit of the system interacts
We study a class of quantum measurement models. A microscopic object is entangled with a macroscopic pointer such that a distinct pointer position is tied to each eigenvalue of the measured object observable. Those different pointer positions mutuall
The exchange interaction between identical qubits in a quantum information processor gives rise to unitary two-qubit errors. It is shown here that decoherence free subspaces (DFSs) for collective decoherence undergo Pauli errors under exchange, which
It is demonstrated that a weak measurement of the squared quadrature observable may yield negative values for coherent states. This result cannot be reproduced by a classical theory where quadratures are stochastic $c$-numbers. The real part of the w