ﻻ يوجد ملخص باللغة العربية
BaTiO3 is a classical ferroelectric studied for last one century for its ferroelectric properties. Lattice dynamics of BaTiO3 is crucial as the utility of devices is governed by phonons. In this work, we show that traditional characterization of the polar phonon modes is ambiguous and often misinterpreted. By combining Raman, Neutron and X-ray diffraction, dielectric spectroscopic observations with first principle calculations, we have re-examined the character of the normal modes of phonons of BaTiO3. We obtained Eigen displacements of vibrational modes through DFT calculations and reclassified the polar modes being Slater (Ti-O), Last (Ba-TiO3) and Axe (BO6) vibrations by correlating experimental and theoretical calculations. The study thus provides correct nomenclature of the polar modes along with the evidence of presence of short range polar distortions along (111) directions in all the phases shown by BaTiO3. The Burns temperature and absence of second order contributions have been witnessed in the temperature dependent Raman study.
First-principles calculations were performed to investigate the ferroelectric properties of barium titanate and bismuth ferrite, as well as phonon dispersion of BaTiO3, using density functional theory and density functional perturbation theory. Resul
Ultraviolet-photoemission (UPS) measurements and supporting specific-heat, thermal-expansion, resistivity and magnetic-moment measurements are reported for the magnetic shape-memory alloy Ni$_2$MnGa over the temperature range $100K < T < 250K$. All m
With the motive of unraveling the origin of native vacancy induced magnetization in ferroelectric perovskite oxide systems, here we explore the consequences of electronic structure modification in magnetic ordering of oxygen deficient epitaxial BaTiO
We report the investigation of the structural stability of Co$_{(1-x)}$Ni$_x$Si monosilicides for $0<x<1$. As CoSi crystallizes in the FeSi-type structure (B20) and NiSi is stable in the MnP-type structure (B31), a complete set of samples has been sy
We present experimental results and theoretical simulations of the adsorption behavior of the metal-organic precursor Co2(CO)8 on SiO2 surfaces after application of two different pre-treatment steps, namely by air plasma cleaning or a focused electro