ﻻ يوجد ملخص باللغة العربية
With the motive of unraveling the origin of native vacancy induced magnetization in ferroelectric perovskite oxide systems, here we explore the consequences of electronic structure modification in magnetic ordering of oxygen deficient epitaxial BaTiO$_{3-delta}$ thin films. Our adapted methodology employs state-of-the-art experimental approaches viz. photo-emission, photo-absorption spectroscopies, magnetometric measurements duly combined with first principles based theoretical methods within the frame work of density functional theory (DFT and DFT+textit{U}) calculations. Oxygen vacancy (O$ _{V} $) is observed leading partial population of Ti 3textit{d} (t$_{2g}$), which induces defect state in electronic structure near the Fermi level and reduces the band gap. The oxygen deficient BaTiO$_{2.75} $ film reveals Mott-Hubbard insulator characteristic, in contrast to the band gap insulating nature of the stoichiometric BaTiO$ _{3}$. The observed magnetic ordering is attributed to the asymmetric distribution of spin polarized charge density in the vicinity of O$ _{V} $ site which originates unequal magnetic moment values at first and second nearest neighboring Ti sites, respectively. Hereby, we present an exclusive method for maneuvering the band gap and on-site electron correlation energy with consequences on magnetic properties of BaTiO$_{3-delta}$ system, which can open a gateway for designing novel single phase multiferroic system.
The performance of perovskite solar cells recently exceeded 15% solar-to-electricity conversion efficiency for small-area devices. The fundamental properties of the active absorber layers, hybrid organic-inorganic perovskites formed from mixing metal
Depending on their chemical composition, Yb compounds often exhibit different valence states. Here we investigate the valence state of YbFe$_4$Al$_8$ using X-ray photoelectron spectroscopy (XPS) and first-principles calculaions. The XPS valence band
The molybdate oxides SrMoO$_3$, PbMoO$_3$, and LaMoO$_3$ are a class of metallic perovskites that exhibit interesting properties including high mobility, and unusual resistivity behavior. We use first-principles methods based on density functional th
The structural, electronic, and magnetic properties of VSSe, VSeTe, VSTe monolayers in both 2H and 1T phases are investigated via first-principles calculations. The 2H phase is energetically favorable in VSSe and VSeTe, whereas the 1T phase is lower
BaTiO3 is a classical ferroelectric studied for last one century for its ferroelectric properties. Lattice dynamics of BaTiO3 is crucial as the utility of devices is governed by phonons. In this work, we show that traditional characterization of the