ﻻ يوجد ملخص باللغة العربية
The ultimate goal of a sound theory of turbulence in fluids is to close in a rational way the Reynolds equations, namely to express the tensor of turbulent stress as a function of the time average of the velocity field. Based on the idea that dissipation in fully developed turbulence is by singular events resulting from an evolution described by the Euler equations, it has been recently observed that the closure problem is strongly restricted, and that it implies that the turbulent stress is a non local function in space of the average velocity field, a kind of extension of classical Boussinesq theory of turbulent viscosity. This leads to rather complex nonlinear integral equation(s) for the time averaged velocity field. This one satisfies some symmetries of the Euler equations. Such symmetries were used by Prandtl and Landau to make various predictions about the shape of the turbulent domain in simple geometries. We explore specifically the case of mixing layer for which the average velocity field only depends on the angle in the wedge behind the splitter plate. This solution yields a pressure difference between the two sides of the splitter which contributes to the lift felt by the plate. Moreover, because of the structure of the equations for the turbulent stress, one can satisfy the Cauchy-Schwarz inequalities, also called the realizability conditions, for this turbulent stress. Such realizability conditions cannot be satisfied with a simple turbulent viscosity.
Recent numerical results show that if a scalar is mixed by periodically forced turbulence, the average mixing rate is directly affected for forcing frequencies small compared to the integral turbulence frequency. We elucidate this by an analytical st
We present an alternative to the well-known Andersons formula for the probability that a first exit time from the planar region between two slopping lines -a_1 t -b_1 and a_2 t + b_2 by a standard Brownian motion is greater than T. As the Andersons f
Three-dimensional laminar flow structures with mixing, chemical reaction, normal strain, and shear strain qualitatively representative of turbulent combustion at the small scales are analyzed. A mixing layer is subjected to counterflow in the transve
Since the introduction of the logarithmic law of the wall more than 80 years ago, the equation for the mean velocity profile in turbulent boundary layers has been widely applied to model near-surface processes and parameterise surface drag. Yet the h
In wall-bounded flows, the laminar regime remain linearly stable up to large values of the Reynolds number while competing with nonlinear turbulent solutions issued from finite amplitude perturbations. The transition to turbulence of plane channel fl