ﻻ يوجد ملخص باللغة العربية
Context. The diffuse X-ray emission surrounding radio galaxies is generally interpreted either as due to inverse Compton scattering of non-thermal radio-emitting electrons on the Cosmic Microwave Background (IC/CMB), or as the thermal emission arising from the hot gas of the intergalactic medium (IGM) permeating galaxy clusters hosting such galaxies, or as a combination of both. In this work we present an imaging and spectral analysis of Chandra observations for the radio galaxy 3C 187 to investigate its diffuse X-ray emission and constrain the contribution of these different physical mechanisms. Aims. The main goals of this work are: (i) to evaluate the extension of the diffuse X-ray emission from this source, (ii) to investigate the two main processes that can account for its origin - IC/CMB and thermal emission from the IGM - and (iii) to test the possibility for 3C 187 to belong to a cluster of galaxies, that can account for the observed diffuse X-ray emission. Methods. To evaluate the extension of the X-ray emission around 3C 187 we extracted surface flux profiles along and across the radio axis. We also extracted X-ray spectra in the region of the radio lobes and in the cross-cone region to estimate the contribution of the non-thermal (IC/CMB) and thermal (IGM) processes to the observed emission, making use of radio (VLA and GMRT) data to investigate the multi-wavelength emission arising from the lobes. We collected Pan-STARRS photometric data to investigate the presence of a galaxy cluster hosting 3C 187, looking for the presence of a red sequence in the source field in the form of a tight clustering of the galaxies in the color space...
We investigated the X-ray emission properties of the powerful radio galaxy 3C 459 revealed by a recent Chandra follow-up observation carried out in October 2014 with a 62 ks exposure. We performed an X-ray spectral analysis from a few selected region
Recent observations of nearby Compton thick (CT) active galactic nuclei (AGNs) with Chandra have resolved hard (>3 keV) X-ray emission extending out from the central supermassive black hole to kiloparsec scales, challenging the long-held belief that
We present the Chandra discovery of soft diffuse X-ray emission in NGC 4151 (L[0.5-2keV]~10^{39} erg s$^{-1}$), extending ~2 kpc from the active nucleus and filling in the cavity of the HI material. The best fit to the X-ray spectrum requires either
We present an X-ray image of the BL Lacertae object OJ287 revealing a long jet, curved by 55 degrees and extending 20, or 90 kpc from the nucleus. This de-projects to >1 Mpc based on the viewing angle on parsec scales. Radio emission follows the gene
We present an XMM-Newton observation of the radio galaxy 4C 23.56 at z=2.48 which reveals extended X-ray emission coincident with the radio lobes spanning ~0.5 Mpc. These are the largest X-ray-bright lobes known at z>2. Under the assumption that thes