ﻻ يوجد ملخص باللغة العربية
We investigated the X-ray emission properties of the powerful radio galaxy 3C 459 revealed by a recent Chandra follow-up observation carried out in October 2014 with a 62 ks exposure. We performed an X-ray spectral analysis from a few selected regions on an image obtained from this observation and also compared the X-ray image with a 4.9 GHz VLA radio map available in the literature. The dominant contribution comes from the radio core but significant X-ray emission is detected at larger angular separations from it, surrounding both radio jets and lobes. According to a scenario in which the extended X-ray emission is due to a plasma collisionally heated by jet-driven shocks and not magnetically dominated, we estimated its temperature to be ~0.8 keV. This hot gas cocoon could be responsible for the radio depolarization observed in 3C 459, as recently proposed also for 3C 171 and 3C 305. On the other hand, our spectral analysis and the presence of an oxygen K edge, blueshifted at 1.23 keV, cannot exclude the possibility that the X-ray radiation originating from the inner regions of the radio galaxy could be intercepted by some outflow of absorbing material intervening along the line of sight, as already found in some BAL quasars.
Most violent and energetic processes in our universe, including mergers of compact objects, explosions of massive stars and extreme accretion events, produce copious amounts of X-rays. X-ray follow-up is an efficient tool for identifying transients b
Context. The diffuse X-ray emission surrounding radio galaxies is generally interpreted either as due to inverse Compton scattering of non-thermal radio-emitting electrons on the Cosmic Microwave Background (IC/CMB), or as the thermal emission arisin
Context. The discovery of the unique source HESS J1507-622 in the very high energy (VHE) range (100 GeV-100 TeV) opened new possibilities to study the parent population of ultra-relativistic particles found in astrophysical sources and underlined the
We studied the soft-X-ray emission of five hard-X sources: IGR J08262-3736, IGR J17354-3255, IGR J16328-4726, SAX J1818.6-1703 and IGR J17348-2045. These sources are: a confirmed supergiant high mass X-ray binary (IGR J08262-3736); candidates (IGR J1
We report on Chandra ACIS-S observations of five type I X-ray bursters with low persistent emission: SAX J1324.5-6313, SAX J1752.3-3128, SAX J1753.5-2349, SAX J1806.5-2215 and SAX J1818.7+1424. We designate candidate persistent sources for four X-ray