ﻻ يوجد ملخص باللغة العربية
Traditional biomedical version of embeddings obtained from pre-trained language models have recently shown state-of-the-art results for relation extraction (RE) tasks in the medical domain. In this paper, we explore how to incorporate domain knowledge, available in the form of molecular structure of drugs, for predicting Drug-Drug Interaction from textual corpus. We propose a method, BERTChem-DDI, to efficiently combine drug embeddings obtained from the rich chemical structure of drugs along with off-the-shelf domain-specific BioBERT embedding-based RE architecture. Experiments conducted on the DDIExtraction 2013 corpus clearly indicate that this strategy improves other strong baselines architectures by 3.4% macro F1-score.
Preventable adverse events as a result of medical errors present a growing concern in the healthcare system. As drug-drug interactions (DDIs) may lead to preventable adverse events, being able to extract DDIs from drug labels into a machine-processab
Drug-drug interaction(DDI) prediction is an important task in the medical health machine learning community. This study presents a new method, multi-view graph contrastive representation learning for drug-drug interaction prediction, MIRACLE for brev
Off-the-shelf biomedical embeddings obtained from the recently released various pre-trained language models (such as BERT, XLNET) have demonstrated state-of-the-art results (in terms of accuracy) for the various natural language understanding tasks (
Interference between pharmacological substances can cause serious medical injuries. Correctly predicting so-called drug-drug interactions (DDI) does not only reduce these cases but can also result in a reduction of drug development cost. Presently, m
The rapid growth in literature accumulates diverse and yet comprehensive biomedical knowledge hidden to be mined such as drug interactions. However, it is difficult to extract the heterogeneous knowledge to retrieve or even discover the latest and no