ﻻ يوجد ملخص باللغة العربية
Preventable adverse events as a result of medical errors present a growing concern in the healthcare system. As drug-drug interactions (DDIs) may lead to preventable adverse events, being able to extract DDIs from drug labels into a machine-processable form is an important step toward effective dissemination of drug safety information. In this study, we tackle the problem of jointly extracting drugs and their interactions, including interaction outcome, from drug labels. Our deep learning approach entails composing various intermediate representations including sequence and graph based context, where the latter is derived using graph convolutions (GC) with a novel attention-based gating mechanism (holistically called GCA). These representations are then composed in meaningful ways to handle all subtasks jointly. To overcome scarcity in training data, we additionally propose transfer learning by pre-training on related DDI data. Our model is trained and evaluated on the 2018 TAC DDI corpus. Our GCA model in conjunction with transfer learning performs at 39.20% F1 and 26.09% F1 on entity recognition (ER) and relation extraction (RE) respectively on the first official test set and at 45.30% F1 and 27.87% F1 on ER and RE respectively on the second official test set corresponding to an improvement over our prior best results by up to 6 absolute F1 points. After controlling for available training data, our model exhibits state-of-the-art performance by improving over the next comparable best outcome by roughly three F1 points in ER and 1.5 F1 points in RE evaluation across two official test sets.
Traditional biomedical version of embeddings obtained from pre-trained language models have recently shown state-of-the-art results for relation extraction (RE) tasks in the medical domain. In this paper, we explore how to incorporate domain knowledg
Preventable adverse drug reactions as a result of medical errors present a growing concern in modern medicine. As drug-drug interactions (DDIs) may cause adverse reactions, being able to extracting DDIs from drug labels into machine-readable form is
Off-the-shelf biomedical embeddings obtained from the recently released various pre-trained language models (such as BERT, XLNET) have demonstrated state-of-the-art results (in terms of accuracy) for the various natural language understanding tasks (
Motivation: Predicting Drug-Target Interaction (DTI) is a well-studied topic in bioinformatics due to its relevance in the fields of proteomics and pharmaceutical research. Although many machine learning methods have been successfully applied in this
When patients need to take medicine, particularly taking more than one kind of drug simultaneously, they should be alarmed that there possibly exists drug-drug interaction. Interaction between drugs may have a negative impact on patients or even caus