ﻻ يوجد ملخص باللغة العربية
Achieving a high conversion efficiency into relativistic electrons is central to short-pulse laser application and fundamentally relies on creating interaction regions with intensities ${gg}10^{18}$~W/cm$^2$. Small focal length optics are typically employed to achieve this goal; however, this solution is impractical for large kJ-class systems that are constrained by facility geometry, debris concerns, and component costs. We fielded target-mounted compound parabolic concentrators to overcome these limitations and achieved nearly an order of magnitude increase to the conversion efficiency and more than tripled electron temperature compared to flat targets. Particle-in-cell simulations demonstrate that plasma confinement within the cone and formation of turbulent laser fields that develop from cone wall reflections are responsible for the improved laser-to-target coupling. {These passive target components can be used to improve the coupling efficiency for all high-intensity short-pulse laser applications, particularly at large facilities with long focal length optics.
We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on the microscale using highly ordered Si microwire arrays. The interaction of a high contrast short pulse laser with a flat target via periodic S
In this paper we study photon emission in the interaction of the laser beam with an under-dense target and the attached reflecting plasma mirror. Photons are emitted due to the inverse Compton scattering when accelerated electrons interact with a ref
We propose a new method of detecting radiation reaction effects in the motion of particles subjected to laser pulses of moderate intensity and long duration. The effect becomes sizeable for particles that gain almost no energy through the interaction with the laser pulse.
We demonstrate generation of 10-20 MeV/u ions with a compact 4 TW laser using a gas target mixed with submicron clusters, corresponding to tenfold increase in the ion energies compared to previous experiments with solid targets. It is inferred that t
We demonstrate coherent hard electromagnetic radiation generation from reflection by the electron density singularity formed at the relativistic bow wave in laser plasma via particle-in-cell simulations. Wake and bow waves driven by an intense laser