ترغب بنشر مسار تعليمي؟ اضغط هنا

Microengineering laser plasma interactions at relativistic intensities

161   0   0.0 ( 0 )
 نشر من قبل Kevin George
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on the microscale using highly ordered Si microwire arrays. The interaction of a high contrast short pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both total and cut-off energies of the produced electron beam. The self generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microwires as they acquire relativistic energies via direct laser acceleration (DLA).



قيم البحث

اقرأ أيضاً

Relativistic electrons generated by the interaction of petawatt-class short laser pulses with solid targets can be used to generate bright X-rays via bremsstrahlung. The efficiency of laser energy transfer into these electrons depends on multiple par ameters including the focused intensity and pre-plasma level. This paper reports experimental results from the interaction of a high intensity petawatt-class glass laser pulses with solid targets at a maximum intensity of $10^{19}$ W/cm$^2$. In-situ measurements of specularly reflected light are used to provide an upper bound of laser absorption and to characterize focused laser intensity, the pre-plasma level and the generation mechanism of second harmonic light. The measured spectrum of electrons and bremsstrahlung radiation provide information about the efficiency of laser energy transfer.
We propose a new method of detecting radiation reaction effects in the motion of particles subjected to laser pulses of moderate intensity and long duration. The effect becomes sizeable for particles that gain almost no energy through the interaction with the laser pulse.
124 - S. Gode , C. Rodel , K. Zeil 2017
We report experimental evidence that multi-MeV protons accelerated in relativistic laser-plasma interactions are modulated by strong filamentary electromagnetic fields. Modulations are observed when a preplasma is developed on the rear side of a $mu$ m-scale solid-density hydrogen target. Under such conditions, electromagnetic fields are amplified by the relativistic electron Weibel instability and are maximized at the critical density region of the target. The analysis of the spatial profile of the protons indicates the generation of $B>$10 MG and $E>$0.1 MV/$mu$m fields with a $mu$m-scale wavelength. These results are in good agreement with three-dimensional particle-in-cell simulations and analytical estimates, which further confirm that this process is dominant for different target materials provided that a preplasma is formed on the rear side with scale length $gtrsim 0.13 lambda_0 sqrt{a_0}$. These findings impose important constraints on the preplasma levels required for high-quality proton acceleration for multi-purpose applications.
102 - Guoqian Liao , Hao Liu , Yutong Li 2018
Ultrahigh-power terahertz (THz) radiation sources are essential for many applications, such as nonlinear THz physics, THz-wave based compact accelerators, etc. However, until now none of THz sources reported, whether based upon large-scale accelerato rs or high power lasers, have produced THz pulses with energies above the millijoule (mJ) barrier. Here we report on the efficient generation of low-frequency (<3 THz) THz pulses with unprecedentedly high energies over 50 mJ. The THz radiation is produced by coherent transition radiation of a picosecond laser-accelerated ultra-bright bunch of relativistic electrons from a solid target. Such high energy THz pulses can not only trigger various nonlinear dynamics in matter, but also open up a new research field of relativistic THz optics.
206 - A. J. Kemp , F. Fiuza , A. Debayle 2013
In the electron-driven fast-ignition approach to inertial confinement fusion, petawatt laser pulses are required to generate MeV electrons that deposit several tens of kilojoules in the compressed core of an imploded DT shell. We review recent progre ss in the understanding of intense laser plasma interactions (LPI) relevant to fast ignition. Increases in computational and modeling capabilities, as well as algorithmic developments have led to enhancement in our ability to perform multi-dimensional particle-in-cell (PIC) simulations of LPI at relevant scales. We discuss the physics of the interaction in terms of laser absorption fraction, the laser-generated electron spectra, divergence, and their temporal evolution. Scaling with irradiation conditions such as laser intensity are considered, as well as the dependence on plasma parameters. Different numerical modeling approaches and configurations are addressed, providing an overview of the modeling capabilities and limitations. In addition, we discuss the comparison of simulation results with experimental observables. In particular, we address the question of surrogacy of todays experiments for the full-scale fast ignition problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا