ﻻ يوجد ملخص باللغة العربية
When a rod is vertically withdrawn from a granular layer, oblique force chains can be developed by effective shearing. In this study, the force-chain structure in a rod-withdrawn granular layer was experimentally investigated using a photoelastic technique. The rod is vertically withdrawn from a two-dimensional granular layer consisting of bidisperse photoelastic disks. During the withdrawal, the development process of force chains is visualized by the photoelastic effect. By systematic analysis of photoelastic images, force chain structures newly developed by the rod withdrawing are identified and analyzed. In particular, the relation between the rod-withdrawing force $F_mathrm{w}$, total force-chains force $F_mathrm{t}$, and their average orientation $theta$ are discussed. We find that the oblique force chains are newly developed by withdrawing. The force-chain angle $theta$ is almost constant (approximately $20^{circ}$ from the horizontal), and the total force $F_mathrm{t}$ gradually increases by the withdrawal. In addition, $F_mathrm{t}sintheta$ shows a clear correlation with $F_mathrm{w}$.
We measure the drag encountered by a vertically oriented rod moving across a sedimented granular bed immersed in a fluid under steady-state conditions. At low rod speeds, the presence of the fluid leads to a lower drag because of buoyancy, whereas a
We report a peculiar dynamic phenomenon in granular gases, chain structures of head-on collisions caused by the boundary heated mechanism form a network in an Airbus micro-gravity experiment and horizontal vibrated one in the laboratory, which differ
We investigate how forces spread through frictionless granular packs at the jamming transition. Previous work has indicated that such packs are isostatic, and thus obey a null stress law which, independent of the packing history, causes rays of stres
We have made experimental observations of the force networks within a two-dimensional granular silo similar to the classical system of Janssen. Models like that of Janssen predict that pressure within a silo saturates with depth as the result of vert
The deformation of thin rods in a viscous liquid is central to the mechanics of motility in cells ranging from textit{Escherichia coli} to sperm. Here we use experiments and theory to study the shape transition of a flexible rod rotating in a viscous