ﻻ يوجد ملخص باللغة العربية
Sr2IrO4 is an archetypal spin-orbit-coupled Mott insulator with an antiferromagnetic state below 240 K. Here we report results of our study on single crystals of Sr2Ir1-xFexO4 (0<x<0.32) and Sr2Ir1-xCoxO4 (0<x<0.22). Fe doping retains the antiferromagnetic state but simultaneously precipitates an emergent metallic state whereas Co doping causes a rapid collapse of both the antiferromagnetic and Mott states, giving rise to a confined metallic state featuring a pronounced linearity of the basal-plane resistivity up to 700 K. The results indicate tetravalent Fe4+(3d4) ions in the intermediate spin state with S=1 and Co4+(3d5) ions in the high spin state with S=5/2 substituting for Ir4+(5d5) ions in Sr2IrO4, respectively. The effective magnetic moment closely tracks the Neel temperature as doping increases, suggesting that the spin state of the dopant predominately determines the magnetic properties in doped Sr2IrO4. Furthermore, all relevant properties including charge-carrier density (e.g., 1028/m3), Sommerfeld coefficient (e.g., 19 mJ/mole K2) and Wilson ratio (e.g., 2.6), consistently demonstrates a metallic state that is both robust and highly correlated in the two systems, arising from the percolation of bound states and the weakening of structural distortions. This study strongly suggests that the antiferromagnetic and Mott states merely coexist in a fortuitous manner in Sr2IrO4.
Strong spin-orbit interaction in the two dimensional compound Sr2IrO4 leads to the formation of Jeff=1/2 isospins with unprecedented dynamics. In Raman scattering a continuum attributed to double spin scattering is observed. With higher excitation en
Spin-orbit entangled magnetic dipoles, often referred to as pseudospins, provide a new avenue to explore novel magnetism inconceivable in the weak spin-orbit coupling limit, but the nature of their low-energy interactions remains to be understood. We
A hole injected into a Mott insulator will gain an internal structure as recently identified by exact numerics, which is characterized by a nontrivial quantum number whose nature is of central importance in understanding the Mott physics. In this wor
An anapole state that breaks inversion and time reversal symmetries with preserving translation symmetry of underlying lattice has aroused great interest as a new quantum state, but only a few candidate materials have been reported. Recently, in a sp
We investigate topological transport in a spin-orbit coupled bosonic Mott insulator. We show that interactions can lead to anomalous quasi-particle dynamics even when the spin-orbit coupling is abelian. To illustrate the latter, we consider the spin-