ترغب بنشر مسار تعليمي؟ اضغط هنا

Crossover from coherent to incoherent scattering in spin-orbit dominated Sr2IrO4

171   0   0.0 ( 0 )
 نشر من قبل Peter Lemmens
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Strong spin-orbit interaction in the two dimensional compound Sr2IrO4 leads to the formation of Jeff=1/2 isospins with unprecedented dynamics. In Raman scattering a continuum attributed to double spin scattering is observed. With higher excitation energy of the incident Laser this signal crosses over to an incoherent background. The characteristic energy scale of this cross over is identical to that of intensity resonance effects in phonon scattering. It is related to exciton-like orbital excitations that are also evident in resonant X-Ray scattering. The crossover and evolution of incoherent excitations are proposed to be due to their coupling to spin excitations. This signals a spin-orbit induced entanglement of spin, lattice and charge degrees of freedoms in Sr2IrO4.



قيم البحث

اقرأ أيضاً

240 - Zhongkai Liu , Ming Yi , Yan Zhang 2015
The level of electronic correlation has been one of the key questions in understanding the nature of superconductivity. Among the iron-based superconductors, the iron chalcogenide family exhibits the strongest electron correlations. To gauge the corr elation strength, we performed systematic angle-resolved photoemission spectroscopy study on the iron chalcogenide series Fe$_{1+y}$Se$_x$Te$_{1-x}$ (0$<$x$<$0.59), a model system with the simplest structure. Our measurement reveals an incoherent to coherent crossover in the electronic structure as the selenium ratio increases and the system evolves from the weakly localized to more itinerant state. Furthermore, we found that the effective mass of bands dominated by the d$_{xy}$ orbital character significantly decreases with increasing selenium ratio, as compared to the d$_{xz}$/d$_{yz}$ orbital-dominated bands. The orbital dependent change in the correlation level agrees with theoretical calculations on the band structure renormalization, and may help to understand the onset of superconductivity in Fe$_{1+y}$Se$_x$Te$_{1-x}$.
A mysterious incoherent metallic (IM) normal state with $T$-linear resistivity is ubiquitous among strongly correlated superconductors. Recent progress with microscopic models exhibiting IM transport has presented the opportunity for us to study new models that exhibit direct transitions into a superconducting state out of IM states within the framework of connected Sachdev-Ye-Kitaev (SYK) quantum dots. Here local SYK interactions within a dot produce IM transport in the normal state, while local attractive interactions drive superconductivity. Through explicit calculations, we find two features of superconductivity arising from an IM normal state: First, despite the absence of quasiparticles in the normal state, the superconducting state still exhibits coherent superfluid transport. Second, the non-quasiparticle nature of the IM Greens functions produces a large enhancement in the ratio of the zero-temperature superconducting gap $Delta$ and transition temperature $T_{sc}$, $2Delta/T_{sc}$, with respect to its BCS value of $3.53$.
The magnetic-field, temperature, and angular dependence of the interlayer magnetoresistance of two different quasi-two-dimensional (2D) organic superconductors is reported. For $kappa$-(BEDT-TTF)$_2$I$_3$ we find a well-resolved peak in the angle-dep endent magnetoresistance at $Theta = 90^circ$ (field parallel to the layers). This clear-cut proof for the coherent nature of the interlayer transport is absent for $beta$-(BEDT-TTF)$_2$SF$_5$CH$_2$CF$_2$SO$_3$. This and the non-metallic behavior of the magnetoresistance suggest an incoherent quasiparticle motion for the latter 2D metal.
Neutron diffraction measurements are presented exploring the magnetic and structural phase behaviors of the candidate J$_{eff}=1/2$ Mott insulating iridate Sr$_2$IrO$_4$. Comparisons are drawn between the correlated magnetism in this single layer sys tem and its bilayer analog Sr$_3$Ir$_2$O$_7$ where both materials exhibit magnetic domains originating from crystallographic twinning and comparable moment sizes. Weakly temperature dependent superlattice peaks violating the reported tetragonal space group of Sr$_2$IrO$_4$ are observed supporting the notion of a lower structural symmetry arising from a high temperature lattice distortion, and we use this to argue that moments orient along a unique in-plane axis demonstrating an orthorhombic symmetry in the resulting spin structure. Our results demonstrate that the correlated spin order and structural phase behaviors in both single and bilayer Sr$_{n+1}$Ir$_{n}$O$_{3n+1}$ systems are remarkably similar and suggest comparable correlation strengths in each system.
One of the most notorious non-Fermi liquid properties of both archetypal heavy-fermion systems [1-4] and the high-Tc copper oxide superconductors [5] is an electrical resistivity that evolves linearly with temperature, T. In the heavy-fermion superco nductor CeCoIn5 [5], this linear behaviour was one of the first indications of the presence of a zero-temperature instability, or quantum critical point. Here, we report the observation of a unique control parameter of T-linear scattering in CeCoIn5, found through systematic chemical substitutions of both magnetic and non-magnetic rare-earth, R, ions into the Ce sub-lattice. We find that the evolution of inelastic scattering in Ce1-xRxCoIn5 is strongly dependent on the f-electron configuration of the R ion, whereas two other key properties -- Cooper-pair breaking and Kondo-lattice coherence -- are not. Thus, T-linear resistivity in CeCoIn5 is intimately related to the nature of incoherent scattering centers in the Kondo lattice, which provides insight into the anomalous scattering rate synonymous with quantum criticality [7].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا