ترغب بنشر مسار تعليمي؟ اضغط هنا

The Mind Is a Powerful Place: How Showing Code Comprehensibility Metrics Influences Code Understanding

269   0   0.0 ( 0 )
 نشر من قبل Daniel Graziotin
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Static code analysis tools and integrated development environments present developers with quality-related software metrics, some of which describe the understandability of source code. Software metrics influence overarching strategic decisions that impact the future of companies and the prioritization of everyday software development tasks. Several software metrics, however, lack in validation: we just choose to trust that they reflect what they are supposed to measure. Some of them were even shown to not measure the quality aspects they intend to measure. Yet, they influence us through biases in our cognitive-driven actions. In particular, they might anchor us in our decisions. Whether the anchoring effect exists with software metrics has not been studied yet. We conducted a randomized and double-blind experiment to investigate the extent to which a displayed metric value for source code comprehensibility anchors developers in their subjective rating of source code comprehensibility, whether performance is affected by the anchoring effect when working on comprehension tasks, and which individual characteristics might play a role in the anchoring effect. We found that the displayed value of a comprehensibility metric has a significant and large anchoring effect on a developers code comprehensibility rating. The effect does not seem to affect the time or correctness when working on comprehension questions related to the code snippets under study. Since the anchoring effect is one of the most robust cognitive biases, and we have limited understanding of the consequences of the demonstrated manipulation of developers by non-validated metrics, we call for an increased awareness of the responsibility in code quality reporting and for corresponding tools to be based on scientific evidence.



قيم البحث

اقرأ أيضاً

The adoption of WebAssembly has rapidly increased in the last few years as it provides a fast and safe model for program execution. However, WebAssembly is not exempt from vulnerabilities that could be exploited by side channels attacks. This class o f vulnerabilities that can be addressed by code diversification. In this paper, we present the first fully automated workflow for the diversification of WebAssembly binaries. We present CROW, an open-source tool implementing this workflow. We evaluate CROWs capabilities on 303 C programs and study its use on a real-life security-sensitive program: libsodium, a cryptographic library. Overall, CROWis able to generate diverse variants for 239 out of 303,(79%) small programs. Furthermore, our experiments show that our approach and tool is able to successfully diversify off-the-shelf cryptographic software (libsodium).
The software development community has been using code quality metrics for the last five decades. Despite their wide adoption, code quality metrics have attracted a fair share of criticism. In this paper, first, we carry out a qualitative exploration by surveying software developers to gauge their opinions about current practices and potential gaps with the present set of metrics. We identify deficiencies including lack of soundness, i.e., the ability of a metric to capture a notion accurately as promised by the metric, lack of support for assessing software architecture quality, and insufficient support for assessing software testing and infrastructure. In the second part of the paper, we focus on one specific code quality metric-LCOM as a case study to explore opportunities towards improved metrics. We evaluate existing LCOM algorithms qualitatively and quantitatively to observe how closely they represent the concept of cohesion. In this pursuit, we first create eight diverse cases that any LCOM algorithm must cover and obtain their cohesion levels by a set of experienced developers and consider them as a ground truth. We show that the present set of LCOM algorithms do poorly w.r.t. these cases. To bridge the identified gap, we propose a new approach to compute LCOM and evaluate the new approach with the ground truth. We also show, using a quantitative analysis using more than 90 thousand types belonging to 261 high-quality Java repositories, the present set of methods paint a very inaccurate and misleading picture of class cohesion. We conclude that the current code quality metrics in use suffer from various deficiencies, presenting ample opportunities for the research community to address the gaps.
Infrastructure-as-code (IaC) is a practice to implement continuous deployment by allowing management and provisioning of infrastructure through the definition of machine-readable files and automation around them, rather than physical hardware configu ration or interactive configuration tools. On the one hand, although IaC represents an ever-increasing widely adopted practice nowadays, still little is known concerning how to best maintain, speedily evolve, and continuously improve the code behind the IaC practice in a measurable fashion. On the other hand, source code measurements are often computed and analyzed to evaluate the different quality aspects of the software developed. However, unlike general-purpose programming languages (GPLs), IaC scripts use domain-specific languages, and metrics used for GPLs may not be applicable for IaC scripts. This article proposes a catalogue consisting of 46 metrics to identify IaC properties focusing on Ansible, one of the most popular IaC language to date, and shows how they can be used to analyze IaC scripts.
In recent years, Neural Machine Translator (NMT) has shown promise in automatically editing source code. Typical NMT based code editor only considers the code that needs to be changed as input and suggests developers with a ranked list of patched cod e to choose from - where the correct one may not always be at the top of the list. While NMT based code editing systems generate a broad spectrum of plausible patches, the correct one depends on the developers requirement and often on the context where the patch is applied. Thus, if developers provide some hints, using natural language, or providing patch context, NMT models can benefit from them. As a proof of concept, in this research, we leverage three modalities of information: edit location, edit code context, commit messages (as a proxy of developers hint in natural language) to automatically generate edits with NMT models. To that end, we build MODIT, a multi-modal NMT based code editing engine. With in-depth investigation and analysis, we show that developers hint as an input modality can narrow the search space for patches and outperform state-of-the-art models to generate correctly patched code in top-1 position.
111 - Ensheng Shi , Yanlin Wang , Lun Du 2021
Source code summaries are important for the comprehension and maintenance of programs. However, there are plenty of programs with missing, outdated, or mismatched summaries. Recently, deep learning techniques have been exploited to automatically gene rate summaries for given code snippets. To achieve a profound understanding of how far we are from solving this problem, in this paper, we conduct a systematic and in-depth analysis of five state-of-the-art neural source code summarization models on three widely used datasets. Our evaluation results suggest that: (1) The BLEU metric, which is widely used by existing work for evaluating the performance of the summarization models, has many variants. Ignoring the differences among the BLEU variants could affect the validity of the claimed results. Furthermore, we discover an important, previously unknown bug about BLEU calculation in a commonly-used software package. (2) Code pre-processing choices can have a large impact on the summarization performance, therefore they should not be ignored. (3) Some important characteristics of datasets (corpus size, data splitting method, and duplication ratio) have a significant impact on model evaluation. Based on the experimental results, we give some actionable guidelines on more systematic ways for evaluating code summarization and choosing the best method in different scenarios. We also suggest possible future research directions. We believe that our results can be of great help for practitioners and researchers in this interesting area.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا