ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards a Catalogue of Software Quality Metrics for Infrastructure Code

134   0   0.0 ( 0 )
 نشر من قبل Stefano Dalla Palma
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Infrastructure-as-code (IaC) is a practice to implement continuous deployment by allowing management and provisioning of infrastructure through the definition of machine-readable files and automation around them, rather than physical hardware configuration or interactive configuration tools. On the one hand, although IaC represents an ever-increasing widely adopted practice nowadays, still little is known concerning how to best maintain, speedily evolve, and continuously improve the code behind the IaC practice in a measurable fashion. On the other hand, source code measurements are often computed and analyzed to evaluate the different quality aspects of the software developed. However, unlike general-purpose programming languages (GPLs), IaC scripts use domain-specific languages, and metrics used for GPLs may not be applicable for IaC scripts. This article proposes a catalogue consisting of 46 metrics to identify IaC properties focusing on Ansible, one of the most popular IaC language to date, and shows how they can be used to analyze IaC scripts.



قيم البحث

اقرأ أيضاً

The software development community has been using code quality metrics for the last five decades. Despite their wide adoption, code quality metrics have attracted a fair share of criticism. In this paper, first, we carry out a qualitative exploration by surveying software developers to gauge their opinions about current practices and potential gaps with the present set of metrics. We identify deficiencies including lack of soundness, i.e., the ability of a metric to capture a notion accurately as promised by the metric, lack of support for assessing software architecture quality, and insufficient support for assessing software testing and infrastructure. In the second part of the paper, we focus on one specific code quality metric-LCOM as a case study to explore opportunities towards improved metrics. We evaluate existing LCOM algorithms qualitatively and quantitatively to observe how closely they represent the concept of cohesion. In this pursuit, we first create eight diverse cases that any LCOM algorithm must cover and obtain their cohesion levels by a set of experienced developers and consider them as a ground truth. We show that the present set of LCOM algorithms do poorly w.r.t. these cases. To bridge the identified gap, we propose a new approach to compute LCOM and evaluate the new approach with the ground truth. We also show, using a quantitative analysis using more than 90 thousand types belonging to 261 high-quality Java repositories, the present set of methods paint a very inaccurate and misleading picture of class cohesion. We conclude that the current code quality metrics in use suffer from various deficiencies, presenting ample opportunities for the research community to address the gaps.
214 - Shaykh Siddique 2021
In the era of revolution, the development of softwares are increasing daily. The quality of software impacts the most in software development. To ensure the quality of the software it needs to be reviewed and updated. The effectiveness of the code re view is that it ensures the quality of software and makes it updated. Code review is the best process that helps the developers to develop a system errorless. This report contains two different code review papers to be evaluated and find the influences that can affect the code reviewing process. The reader can easily understand the factor of the code review process which is directly associated with software quality assurance.
This paper presents a tertiary review of software quality measurement research. To conduct this review, we examined an initial dataset of 7,811 articles and found 75 relevant and high-quality secondary analyses of software quality research. Synthesiz ing this body of work, we offer an overview of perspectives, measurement approaches, and trends. We identify five distinct perspectives that conceptualize quality as heuristic, as maintainability, as a holistic concept, as structural features of software, and as dependability. We also identify three key challenges. First, we find widespread evidence of validity questions with common measures. Second, we observe the application of machine learning methods without adequate evaluation. Third, we observe the use of aging datasets. Finally, from these observations, we sketch a path toward a theoretical framework that will allow software engineering researchers to systematically confront these weaknesses while remaining grounded in the experiences of developers and the real world in which code is ultimately deployed.
In any sufficiently complex software system there are experts, having a deeper understanding of parts of the system than others. However, it is not always clear who these experts are and which particular parts of the system they can provide help with . We propose a framework to elicit the expertise of developers and recommend experts by analyzing complexity measures over time. Furthermore, teams can detect those parts of the software for which currently no, or only few experts exist and take preventive actions to keep the collective code knowledge and ownership high. We employed the developed approach at a medium-sized company. The results were evaluated with a survey, comparing the perceived and the computed expertise of developers. We show that aggregated code metrics can be used to identify experts for different software components. The identified experts were rated as acceptable candidates by developers in over 90% of all cases.
Recently, the automated translation of source code from one programming language to another by using automatic approaches inspired by Neural Machine Translation (NMT) methods for natural languages has come under study. However, such approaches suffer from the same problem as previous NMT approaches on natural languages, viz. the lack of an ability to estimate and evaluate the quality of the translations; and consequently ascribe some measure of interpretability to the models choices. In this paper, we attempt to estimate the quality of source code translations built on top of the TransCoder model. We consider the code translation task as an analog of machine translation (MT) for natural languages, with some added caveats. We present our main motivation from a user study built around code translation; and present a technique that correlates the confidences generated by that model to lint errors in the translated code. We conclude with some observations on these correlations, and some ideas for future work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا