ترغب بنشر مسار تعليمي؟ اضغط هنا

Zoom-to-Inpaint: Image Inpainting with High-Frequency Details

94   0   0.0 ( 0 )
 نشر من قبل Soo Ye Kim
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Although deep learning has enabled a huge leap forward in image inpainting, current methods are often unable to synthesize realistic high-frequency details. In this paper, we propose applying super-resolution to coarsely reconstructed outputs, refining them at high resolution, and then downscaling the output to the original resolution. By introducing high-resolution images to the refinement network, our framework is able to reconstruct finer details that are usually smoothed out due to spectral bias - the tendency of neural networks to reconstruct low frequencies better than high frequencies. To assist training the refinement network on large upscaled holes, we propose a progressive learning technique in which the size of the missing regions increases as training progresses. Our zoom-in, refine and zoom-out strategy, combined with high-resolution supervision and progressive learning, constitutes a framework-agnostic approach for enhancing high-frequency details that can be applied to any CNN-based inpainting method. We provide qualitative and quantitative evaluations along with an ablation analysis to show the effectiveness of our approach. This seemingly simple, yet powerful approach, outperforms state-of-the-art inpainting methods.



قيم البحث

اقرأ أيضاً

Presenting high-resolution (HR) human appearance is always critical for the human-centric videos. However, current imagery equipment can hardly capture HR details all the time. Existing super-resolution algorithms barely mitigate the problem by only considering universal and low-level priors of im-age patches. In contrast, our algorithm is under bias towards the human body super-resolution by taking advantage of high-level prior defined by HR human appearance. Firstly, a motion analysis module extracts inherent motion pattern from the HR reference video to refine the pose estimation of the low-resolution (LR) sequence. Furthermore, a human body reconstruction module maps the HR texture in the reference frames onto a 3D mesh model. Consequently, the input LR videos get super-resolved HR human sequences are generated conditioned on the original LR videos as well as few HR reference frames. Experiments on an existing dataset and real-world data captured by hybrid cameras show that our approach generates superior visual quality of human body compared with the traditional method.
This paper shows that when applying machine learning to digital zoom for photography, it is beneficial to use real, RAW sensor data for training. Existing learning-based super-resolution methods do not use real sensor data, instead operating on RGB i mages. In practice, these approaches result in loss of detail and accuracy in their digitally zoomed output when zooming in on distant image regions. We also show that synthesizing sensor data by resampling high-resolution RGB images is an oversimplified approximation of real sensor data and noise, resulting in worse image quality. The key barrier to using real sensor data for training is that ground truth high-resolution imagery is missing. We show how to obtain the ground-truth data with optically zoomed images and contribute a dataset, SR-RAW, for real-world computational zoom. We use SR-RAW to train a deep network with a novel contextual bilateral loss (CoBi) that delivers critical robustness to mild misalignment in input-output image pairs. The trained network achieves state-of-the-art performance in 4X and 8X computational zoom.
100 - Yu Zeng , Zhe Lin , Jimei Yang 2020
Existing image inpainting methods often produce artifacts when dealing with large holes in real applications. To address this challenge, we propose an iterative inpainting method with a feedback mechanism. Specifically, we introduce a deep generative model which not only outputs an inpainting result but also a corresponding confidence map. Using this map as feedback, it progressively fills the hole by trusting only high-confidence pixels inside the hole at each iteration and focuses on the remaining pixels in the next iteration. As it reuses partial predictions from the previous iterations as known pixels, this process gradually improves the result. In addition, we propose a guided upsampling network to enable generation of high-resolution inpainting results. We achieve this by extending the Contextual Attention module to borrow high-resolution feature patches in the input image. Furthermore, to mimic real object removal scenarios, we collect a large object mask dataset and synthesize more realistic training data that better simulates user inputs. Experiments show that our method significantly outperforms existing methods in both quantitative and qualitative evaluations. More results and Web APP are available at https://zengxianyu.github.io/iic.
Image completion has achieved significant progress due to advances in generative adversarial networks (GANs). Albeit natural-looking, the synthesized contents still lack details, especially for scenes with complex structures or images with large hole s. This is because there exists a gap between low-level reconstruction loss and high-level adversarial loss. To address this issue, we introduce a perceptual network to provide mid-level guidance, which measures the semantical similarity between the synthesized and original contents in a similarity-enhanced space. We conduct a detailed analysis on the effects of different losses and different levels of perceptual features in image completion, showing that there exist complementarity between adversarial training and perceptual features. By combining them together, our model can achieve nearly seamless fusion results in an end-to-end manner. Moreover, we design an effective lightweight generator architecture, which can achieve effective image inpainting with far less parameters. Evaluated on CelebA Face and Paris StreetView dataset, our proposed method significantly outperforms existing methods.
In this paper, we use belief-propagation techniques to develop fast algorithms for image inpainting. Unlike traditional gradient-based approaches, which may require many iterations to converge, our techniques achieve competitive results after only a few iterations. On the other hand, while belief-propagation techniques are often unable to deal with high-order models due to the explosion in the size of messages, we avoid this problem by approximating our high-order prior model using a Gaussian mixture. By using such an approximation, we are able to inpaint images quickly while at the same time retaining good visual results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا