ﻻ يوجد ملخص باللغة العربية
In this paper, a class of Schr{o}dinger-Poisson system involving multiple competing potentials and critical Sobolev exponent is considered. Such a problem cannot be studied with the same argument of the nonlinear term with only a positive potential, because the weight potentials set ${Q_i(x)|1le i le m}$ contains nonpositive, sign-changing, and nonnegative elements. By introducing the ground energy function and subtle analysis, we first prove the existence of ground state solution $v_varepsilon$ in the semiclassical limit via the Nehari manifold and concentration-compactness principle. Then we show that $v_varepsilon$ converges to the ground state solution of the associated limiting problem and concentrates at a concrete set characterized by the potentials. At the same time, some properties for the ground state solution are also studied. Moreover, a sufficient condition for the nonexistence of the ground state solution is obtained.
We consider systems of weakly coupled Schrodinger equations with nonconstant potentials and we investigate the existence of nontrivial nonnegative solutions which concentrate around local minima of the potentials. We obtain sufficient and necessary c
This paper is devoted to study the existence and multiplicity solutions for the nonlinear Schrodinger-Poisson systems involving fractional Laplacian operator: begin{equation}label{eq*} left{ aligned &(-Delta)^{s} u+V(x)u+ phi u=f(x,u), quad &te
In this paper we deal with the multiplicity of positive solutions to the fractional Laplacian equation begin{equation*} (-Delta)^{frac{alpha}{2}} u=lambda f(x)|u|^{q-2}u+|u|^{2^{*}_{alpha}-2}u, quadtext{in},,Omega, u=0,text{on},,partialOmega, end
We investigate qualitative properties of positive singular solutions of some elliptic systems in bounded and unbounded domains. We deduce symmetry and monotonicity properties via the moving plane procedure. Moreover, in the unbounded case, we study s
In this paper, we consider the following nonlinear Schr{o}dinger equations with mixed nonlinearities: begin{eqnarray*} left{aligned &-Delta u=lambda u+mu |u|^{q-2}u+|u|^{2^*-2}uquadtext{in }mathbb{R}^N, &uin H^1(bbr^N),quadint_{bbr^N}u^2=a^2, endalig