ﻻ يوجد ملخص باللغة العربية
We investigate qualitative properties of positive singular solutions of some elliptic systems in bounded and unbounded domains. We deduce symmetry and monotonicity properties via the moving plane procedure. Moreover, in the unbounded case, we study some cooperative elliptic systems involving critical nonlinearities in $mathbb{R}^n$.
We consider positive singular solutions to semilinear elliptic problems with possibly singular nonlinearity. We deduce symmetry and monotonicity properties of the solutions via the moving plane procedure.
Let $ngeq 3$, $0le m<frac{n-2}{n}$, $rho_1>0$, $beta>beta_0^{(m)}=frac{mrho_1}{n-2-nm}$, $alpha_m=frac{2beta+rho_1}{1-m}$ and $alpha=2beta+rho_1$. For any $lambda>0$, we prove the uniqueness of radially symmetric solution $v^{(m)}$ of $La(v^m/m)+alph
We consider positive singular solutions of PDEs arising from double phase functionals. Exploiting a rather new version of the moving plane method originally developed by Sciunzi, we prove symmetry and monotonicity properties of such solutions.
It is established existence of bound and ground state solutions for quasilinear elliptic systems driven by (phi 1, phi 2)-Laplacian operator. The main feature here is to consider quasilinear elliptic systems involving both nonsingular nonlinearities
This paper deals with existence and regularity of positive solutions of singular elliptic problems on a smooth bounded domain with Dirichlet boundary conditions involving the $Phi$-Laplacian operator. The proof of existence is based on a variant of t