ﻻ يوجد ملخص باللغة العربية
Molecular-orbital-based machine learning (MOB-ML) enables the prediction of accurate correlation energies at the cost of obtaining molecular orbitals. Here, we present the derivation, implementation, and numerical demonstration of MOB-ML analytical nuclear gradients which are formulated in a general Lagrangian framework to enforce orthogonality, localization, and Brillouin constraints on the molecular orbitals. The MOB-ML gradient framework is general with respect to the regression technique (e.g., Gaussian process regression or neural networks) and the MOB feature design. We show that MOB-ML gradients are highly accurate compared to other ML methods on the ISO17 data set while only being trained on energies for hundreds of molecules compared to energies and gradients for hundreds of thousands of molecules for the other ML methods. The MOB-ML gradients are also shown to yield accurate optimized structures, at a computational cost for the gradient evaluation that is comparable to Hartree-Fock theory or hybrid DFT.
Projection-based embedding provides a simple, robust, and accurate approach for describing a small part of a chemical system at the level of a correlated wavefunction method while the remainder of the system is described at the level of density funct
We address the degree to which machine learning can be used to accurately and transferably predict post-Hartree-Fock correlation energies. Refined strategies for feature design and selection are presented, and the molecular-orbital-based machine lear
Machine learning is used to approximate the kinetic energy of one dimensional diatomics as a functional of the electron density. The functional can accurately dissociate a diatomic, and can be systematically improved with training. Highly accurate se
The computational investigation of photochemical processes often entails the calculation of excited state geometries, energies, and energy gradients. The nuclear-electronic orbital (NEO) approach treats specified nuclei, typically protons, quantum me
Recent synthetic studies on the organic molecules tetracene and pentacene have found certain dimers and oligomers to exhibit an intense absorption in the visible region of the spectrum which is not present in the monomer or many previously-studied di