ﻻ يوجد ملخص باللغة العربية
Projection-based embedding provides a simple, robust, and accurate approach for describing a small part of a chemical system at the level of a correlated wavefunction method while the remainder of the system is described at the level of density functional theory. Here, we present the derivation, implementation, and numerical demonstration of analytical nuclear gradients for projection-based wavefunction-in-density functional theory (WF-in-DFT) embedding. The gradients are formulated in the Lagrangian framework to enforce orthogonality, localization, and Brillouin constraints on the molecular orbitals. An important aspect of the gradient theory is that WF contributions to the total WF-in-DFT gradient can be simply evaluated using existing WF gradient implementations without modification. Another simplifying aspect is that Kohn-Sham (KS) DFT contributions to the projection-based embedding gradient do not require knowledge of the WF calculation beyond the relaxed WF density. Projection-based WF-in-DFT embedding gradients are thus easily generalized to any combination of WF and KS-DFT methods. We provide numerical demonstration of the method for several applications, including calculation of a minimum energy pathway for a hydride transfer in a cobalt-based molecular catalyst using the nudged-elastic-band method at the CCSD-in-DFT level of theory, which reveals large differences from the transition state geometry predicted using DFT.
Molecular-orbital-based machine learning (MOB-ML) enables the prediction of accurate correlation energies at the cost of obtaining molecular orbitals. Here, we present the derivation, implementation, and numerical demonstration of MOB-ML analytical n
We present an approximate scheme for analytical gradients and nonadiabatic couplings for calculating state-average density matrix renormalization group self-consistent-field wavefunction. Our formalism follows closely the state-average complete activ
The computational investigation of photochemical processes often entails the calculation of excited state geometries, energies, and energy gradients. The nuclear-electronic orbital (NEO) approach treats specified nuclei, typically protons, quantum me
Recently a novel approach to find approximate exchange-correlation functionals in density-functional theory (DFT) was presented (U. Mordovina et. al., JCTC 15, 5209 (2019)), which relies on approximations to the interacting wave function using densit
The idea of using fragment embedding to circumvent the high computational scaling of accurate electronic structure methods while retaining high accuracy has been a long-standing goal for quantum chemists. Traditional fragment embedding methods mainly