ﻻ يوجد ملخص باللغة العربية
The aim of this paper is to study class number relations over function fields and the intersections of Hirzebruch-Zagier type divisors on the Drinfeld-Stuhler modular surfaces. The main bridge is a particular harmonic theta series with nebentypus. Using the strong approximation theorem, the Fourier coefficients of this series are expressed in two ways; one comes from modified Hurwitz class numbers and another gives the intersection numbers in question. An elaboration of this approach enables us to interpret these class numbers as a mass sum over the CM points on the Drinfeld-Stuhler modular curves, and even realize the generating function as a metaplectic automorphic form.
By considering the intersections of Shimura curves and Humbert surfaces on the Siegel modular threefold, we obtain new class number relations. The result is a higher-dimensional analogue of the classical Hurwitz-Kronecker class number relation.
We solve the sup-norm problem for spherical Hecke-Maass newforms of square-free level for the group GL(2) over a number field, with a power saving over the local geometric bound simultaneously in the eigenvalue and the level aspect. Our bounds featur
In this paper we shall prove a subconvexity bound for $GL(2) times GL(2)$ $L$-function in $t$-aspect by using a $GL(1)$ circle method.
In this paper, we study simple cubic fields in the function field setting, and also generalize the notion of a set of exceptional units to cubic function fields, namely the notion of $k$-exceptional units. We give a simple proof that the Galois simpl
We present computational results on the divisor class number and the regulator of a cubic function field over a large base field. The underlying method is based on approximations of the Euler product representation of the zeta function of such a fiel