ﻻ يوجد ملخص باللغة العربية
We present computational results on the divisor class number and the regulator of a cubic function field over a large base field. The underlying method is based on approximations of the Euler product representation of the zeta function of such a field. We give details on the implementation for purely cubic function fields of signatures $(3,1)$ and $(1, 1; 1, 2)$, operating in the ideal class group and infrastructure of the function field, respectively. Our implementation provides numerical evidence of the computational effectiveness of this algorithm. With the exception of special cases, such as purely cubic function fields defined by superelliptic curves, the examples provided are the largest divisor class numbers and regulators ever computed for a cubic function field over a large prime field. The ideas underlying the optimization of the class number algorithm can in turn be used to analyze the distribution of the zeros of the function fields zeta function. We provide a variety of data on a certain distribution of the divisor class number that verify heuristics by Katz and Sarnak on the distribution of the zeroes of the zeta function.
We describe and give computational results of a procedure to compute the divisor class number and regulator of most purely cubic function fields of unit rank 2. Our implementation is an improvement to Pollards Kangaroo method in infrastructures, usin
In this paper, we study simple cubic fields in the function field setting, and also generalize the notion of a set of exceptional units to cubic function fields, namely the notion of $k$-exceptional units. We give a simple proof that the Galois simpl
For a cubic algebraic extension $K$ of $mathbb{Q}$, the behavior of the ideal counting function is considered in this paper. Let $a_{K}(n)$ be the number of integral ideals of the field $K$ with norm $n$. An asymptotic formula is given for the sum $$
We present a method for tabulating all cubic function fields over $mathbb{F}_q(t)$ whose discriminant $D$ has either odd degree or even degree and the leading coefficient of $-3D$ is a non-square in $mathbb{F}_{q}^*$, up to a given bound $B$ on the d
We consider the Galois group $G_2(K)$ of the maximal unramified $2$-extension of $K$ where $K/mathbb{Q}$ is cyclic of degree $3$. We also consider the group $G^+_2(K)$ where ramification is allowed at infinity. In the spirit of the Cohen-Lenstra heur