ترغب بنشر مسار تعليمي؟ اضغط هنا

The SAMI Galaxy Survey: Kinematics of stars and gas in brightest group galaxies; the role of group dynamics

82   0   0.0 ( 0 )
 نشر من قبل Mojtaba Raouf Hajar Zarrin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the stellar and gas kinematics of the brightest group galaxies (BGGs) in dynamically relaxed and unrelaxed galaxy groups for a sample of 154 galaxies in the SAMI galaxy survey. We characterize the dynamical state of the groups using the luminosity gap between the two most luminous galaxies and the BGG offset from the luminosity centroid of the group. We find that the misalignment between the rotation axis of gas and stellar components is more frequent in the BGGs in unrelaxed groups, although with quite low statistical significance. Meanwhile galaxies whose stellar dynamics would be classified as `regular rotators based on their kinemetry are more common in relaxed groups. We confirm that this dependency on group dynamical state remains valid at fixed stellar mass and Sersic index. The observed trend could potentially originate from a differing BGG accretion history in virialised and evolving groups. Amongst the halo relaxation probes, the group BGG offset appears to play a stronger role than the luminosity gap on the stellar kinematic differences of the BGGs. However, both the group BGG offset and luminosity gap appear to roughly equally drive the misalignment between the gas and stellar component of the BGGs in one direction. This study offers the first evidence that the dynamical state of galaxy groups may influence the BGGs stellar and gas kinematics and calls for further studies using a larger sample with higher signal-to-noise.



قيم البحث

اقرأ أيضاً

Using a volume-limited sample of 550 groups from the Galaxy And Mass Assembly (GAMA) Galaxy Group Catalogue spanning the halo mass range $12.8 < log [M_{h}/M] < 14.2$, we investigate the merging potential of central Brightest Group Galaxies (BGGs). W e use spectroscopically-confirmed close-companion galaxies as an indication of the potential stellar mass build-up of low-redshift BGGs, $z leq 0.2$. We identify 17 close-companion galaxies with projected separations $r_{p} < 30$ kpc, relative velocities $Delta v leq 300$ km s$^{-1}$, and stellar-mass ratios $M_{BGG}/M_{CC} leq 4$ relative to the BGG. These close-companion galaxies yield a total pair fraction of $0.03 pm 0.01$. Overall, we find that BGGs in our sample have the potential to grow in stellar mass due to mergers by $2.2 pm 1.5%$ Gyr$^{-1}$. This is lower than the stellar mass growth predicted by current galaxy evolution models.
Recently, large samples of visually classified early-type galaxies (ETGs) containing dust have been identified using space-based infrared observations with the Herschel Space Telescope. The presence of large quantities of dust in massive ETGs is pecu liar as X-ray halos of these galaxies are expected to destroy dust in 10 Myr (or less). This has sparked a debate regarding the origin of the dust: is it internally produced by asymptotic giant branch (AGB) stars, or is it accreted externally through mergers? We examine the 2D stellar and ionised gas kinematics of dusty ETGs using IFS observations from the SAMI galaxy survey, and integrated star-formation rates, stellar masses, and dust masses from the GAMA survey. Only 8% (4/49) of visually-classified ETGs are kinematically consistent with being dispersion-supported systems. These dispersion-dominated galaxies exhibit discrepancies between stellar and ionised gas kinematics, either offsets in the kinematic position angle or large differences in the rotational velocity, and are outliers in star-formation rate at a fixed dust mass compared to normal star-forming galaxies. These properties are suggestive of recent merger activity. The remaining 90% of dusty ETGs have low velocity dispersions and/or large circular velocities, typical of rotation-dominated galaxies. These results, along with the general evidence of published works on X-ray emission in ETGs, suggest that they are unlikely to host hot, X-ray gas consistent with their low stellar mass when compared to dispersion-dominated galaxies. This means dust will be long lived and thus these galaxies do not require external scenarios for the origin of their dust content.
The kinematic morphology-density relation of galaxies is normally attributed to a changing distribution of galaxy stellar masses with the local environment. However, earlier studies were largely focused on slow rotators; the dynamical properties of t he overall population in relation to environment have received less attention. We use the SAMI Galaxy Survey to investigate the dynamical properties of $sim$1800 early and late-type galaxies with $log(M_*/M_{odot})>9.5$ as a function of mean environmental overdensity ($Sigma_{5}$) and their rank within a group or cluster. By classifying galaxies into fast and slow rotators, at fixed stellar mass above $log(M_*/M_{odot})>10.5$, we detect a higher fraction ($sim3.4sigma$) of slow rotators for group and cluster centrals and satellites as compared to isolated-central galaxies. Focusing on the fast-rotator population, we also detect a significant correlation between galaxy kinematics and their stellar mass as well as the environment they are in. Specifically, by using inclination-corrected or intrinsic $lambda_{R_e}$ values, we find that, at fixed mass, satellite galaxies on average have the lowest $lambda_{,R_e,intr}$, isolated-central galaxies have the highest $lambda_{,R_e,intr}$, and group and cluster centrals lie in between. Similarly, galaxies in high-density environments have lower mean $lambda_{,R_e,intr}$ values as compared to galaxies at low environmental density. However, at fixed $Sigma_{5}$, the mean $lambda_{,R_e,intr}$ differences for low and high-mass galaxies are of similar magnitude as when varying $Sigma_{5}$ {($Delta lambda_{,R_e,intr} sim 0.05$. Our results demonstrate that after stellar mass, environment plays a significant role in the creation of slow rotators, while for fast rotators we also detect an independent, albeit smaller, impact of mass and environment on their kinematic properties.
This paper shows a technique for searching for bright massive stars in galaxies beyond the Local Group. To search for massive stars, we used the results of stellar photometry of the Hubble Space Telescope images using the DAOPHOT and DOLPHOT packages . The results of such searches are shown on the example of the galaxies DDO68, M94 and NGC1672. In the galaxy DDO68 the LBV star changes its brightness, and in M94 massive stars can be identified by the excess in the H${alpha}$ band. For the galaxy NGC1672, we measured the distance for the first time by the TRGB method, which made it possible to determine the luminosities of the brightest stars, likely hypergiants, in the young star formation region. So far we have performed stellar photometry of HST images of 320 northern sky galaxies located at a distance below 12Mpc. This allowed us to identify 53 galaxies with probable hypergiants. Further photometric and spectral observations of these galaxies are planned to search for massive stars.
Misalignment of gas and stellar rotation in galaxies can give clues to the origin and processing of accreted gas. Integral field spectroscopic observations of 1213 galaxies from the SAMI Galaxy Survey show that 11% of galaxies with fitted gas and ste llar rotation are misaligned by more than 30 degrees in both field/group and cluster environments. Using SAMI morphological classifications and Sersic indices, the misalignment fraction is 45+/-6% in early-type galaxies, but only 5+/-1% in late-type galaxies. The distribution of position angle offsets is used to test the physical drivers of this difference. Slower dynamical settling time of the gas in elliptical stellar mass distributions accounts for a small increase in misalignment in early-type galaxies. However, gravitational dynamical settling time is insufficient to fully explain the observed differences between early- and late-type galaxies in the distributions of the gas/stellar position angle offsets. LTGs have primarily accreted gas close to aligned rather than settled from misaligned based on analysis of the skewed distribution of PA offsets compared to a dynamical settling model. Local environment density is less important in setting the misalignment fractions than morphology, suggesting that mergers are not the main source of accreted gas in these disks. Cluster environments are found to have gas misalignment driven primarily by cluster processes not by gas accretion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا