ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy And Mass Assembly (GAMA) Survey: The Merging Potential of Brightest Group Galaxies

149   0   0.0 ( 0 )
 نشر من قبل Kirsten Banks
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a volume-limited sample of 550 groups from the Galaxy And Mass Assembly (GAMA) Galaxy Group Catalogue spanning the halo mass range $12.8 < log [M_{h}/M] < 14.2$, we investigate the merging potential of central Brightest Group Galaxies (BGGs). We use spectroscopically-confirmed close-companion galaxies as an indication of the potential stellar mass build-up of low-redshift BGGs, $z leq 0.2$. We identify 17 close-companion galaxies with projected separations $r_{p} < 30$ kpc, relative velocities $Delta v leq 300$ km s$^{-1}$, and stellar-mass ratios $M_{BGG}/M_{CC} leq 4$ relative to the BGG. These close-companion galaxies yield a total pair fraction of $0.03 pm 0.01$. Overall, we find that BGGs in our sample have the potential to grow in stellar mass due to mergers by $2.2 pm 1.5%$ Gyr$^{-1}$. This is lower than the stellar mass growth predicted by current galaxy evolution models.



قيم البحث

اقرأ أيضاً

We derive the close pair fractions and volume merger rates as a function of luminosity and morphology for galaxies in the GAMA survey with -23 < M(r) < -17 at 0.01 < z < 0.22. The merger fraction is about 0.015 at all luminosities (assuming 1/2 of pa irs merge) and the volume merger rate is about 0.00035 per cubic Mpc per Gyr. Dry mergers (between red or spheroidal galaxies) are uncommon and decrease with decreasing luminosity. Fainter mergers are wet, between blue or disky galaxies. Damp mergers (one of each type) follow the average of dry and wet mergers. In the brighter luminosity bin (-23 < M(r) < -20) the merger rate evolution is flat, irrespective of colour or morphology. The makeup of the merging population does not change since z = 0.2. Major mergers and dry mergers appear comparatively unimportant in the buildup of the red sequence over the past 2 Gyr. We compare the colour, morphology, environmental density and degree of activity of galaxies in pairs to those of more isolated objects in the same volume. Galaxies in close pairs tend to be both redder and slightly more spheroid-dominated. This may be due to harassment in multiple previous passes prior to the current interaction. Galaxy pairs do not appear to prefer significantly denser environments. There is no evidence of an enhancement in the AGN fraction in pairs, compared to other galaxies in the same volume.
Using the complete GAMA-I survey covering ~142 sq. deg. to r=19.4, of which ~47 sq. deg. is to r=19.8, we create the GAMA-I galaxy group catalogue (G3Cv1), generated using a friends-of-friends (FoF) based grouping algorithm. Our algorithm has been te sted extensively on one family of mock GAMA lightcones, constructed from Lambda-CDM N-body simulations populated with semi-analytic galaxies. Recovered group properties are robust to the effects of interlopers and are median unbiased in the most important respects. G3Cv1 contains 14,388 galaxy groups (with multiplicity >= 2$), including 44,186 galaxies out of a possible 110,192 galaxies, implying ~40% of all galaxies are assigned to a group. The similarities of the mock group catalogues and G3Cv1 are multiple: global characteristics are in general well recovered. However, we do find a noticeable deficit in the number of high multiplicity groups in GAMA compared to the mocks. Additionally, despite exceptionally good local spatial completeness, G3Cv1 contains significantly fewer compact groups with 5 or more members, this effect becoming most evident for high multiplicity systems. These two differences are most likely due to limitations in the physics included of the current GAMA lightcone mock. Further studies using a variety of galaxy formation models are required to confirm their exact origin.
There are many proposed mechanisms driving the morphological transformation of disk galaxies to elliptical galaxies. In this paper, we determine if the observed transformation in low mass groups can be explained by the merger histories of galaxies. W e measured the group mass-morphology relation for groups from the Galaxy and Mass Assembly group catalogue with masses from 10$^{11}$ - 10$^{15}$ M$_{odot}$. Contrary to previous studies, the fraction of elliptical galaxies in our more complete group sample increases significantly with group mass across the full range of group mass. The elliptical fraction increases at a rate of 0.163$pm$0.012 per dex of group mass for groups more massive than 10$^{12.5}$ M$_{odot}$. If we allow for uncertainties in the observed group masses, our results are consistent with a continuous increase in elliptical fraction from group masses as low as 10$^{11}$M$_{odot}$. We tested if this observed relation is consistent with merger activity using a GADGET-2 dark matter simulation of the galaxy groups. We specified that a simulated galaxy would be transformed to an elliptical morphology either if it experienced a major merger or if its cumulative mass gained from minor mergers exceeded 30 per cent of its final mass. We then calculated a group mass-morphology relation for the simulations. The position and slope of the simulated relation were consistent with the observational relation, with a gradient of 0.184$pm$0.010 per dex of group mass. These results demonstrate a strong correlation between the frequency of merger events and disk-to-elliptical galaxy transformation in galaxy group environments.
We explore how the group environment may affect the evolution of star-forming galaxies. We select 1197 Galaxy And Mass Assembly (GAMA) groups at $0.05leq z leq 0.2$ and analyze the projected phase space (PPS) diagram, i.e. the galaxy velocity as a fu nction of projected group-centric radius, as a local environmental metric in the low-mass halo regime $10^{12}leq (M_{200}/M_{odot})< 10^{14}$. We study the properties of star-forming group galaxies, exploring the correlation of star formation rate (SFR) with radial distance and stellar mass. We find that the fraction of star-forming group members is higher in the PPS regions dominated by recently accreted galaxies, whereas passive galaxies dominate the virialized regions. We observe a small decline in specific SFR of star-forming galaxies towards the group center by a factor $sim 1.2$ with respect to field galaxies. Similar to cluster studies, we conclude for low-mass halos that star-forming group galaxies represent an infalling population from the field to the halo and show suppressed star formation.
138 - D. J. Farrow 2015
We measure the projected 2-point correlation function of galaxies in the 180 deg$^2$ equatorial regions of the GAMA II survey, for four different redshift slices between z = 0.0 and z=0.5. To do this we further develop the Cole (2011) method of produ cing suitable random catalogues for the calculation of correlation functions. We find that more r-band luminous, more massive and redder galaxies are more clustered. We also find that red galaxies have stronger clustering on scales less than ~3 $h^{-1}$ Mpc. We compare to two differe
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا