ﻻ يوجد ملخص باللغة العربية
FRB 20180916B is a well-studied repeating fast radio burst source. Its proximity (~150 Mpc), along with detailed studies of the bursts, have revealed many clues about its nature -- including a 16.3-day periodicity in its activity. Here we report on the detection of 18 bursts using LOFAR at 110-188 MHz, by far the lowest-frequency detections of any FRB to date. Some bursts are seen down to the lowest-observed frequency of 110 MHz, suggesting that their spectra extend even lower. These observations provide an order-of-magnitude stronger constraint on the optical depth due to free-free absorption in the sources local environment. The absence of circular polarization and nearly flat polarization angle curves are consistent with burst properties seen at 300-1700 MHz. Compared with higher frequencies, the larger burst widths (~40-160 ms at 150 MHz) and lower linear polarization fractions are likely due to scattering. We find ~2-3 rad/m^2 variations in the Faraday rotation measure that may be correlated with the activity cycle of the source. We compare the LOFAR burst arrival times to those of 38 previously published and 22 newly detected bursts from the uGMRT (200-450 MHz) and CHIME/FRB (400-800 MHz). Simultaneous observations show 5 CHIME/FRB bursts when no emission is detected by LOFAR. We find that the burst activity is systematically delayed towards lower frequencies by ~3 days from 600 MHz to 150 MHz. We discuss these results in the context of a model in which FRB 20180916B is an interacting binary system featuring a neutron star and high-mass stellar companion.
Fast radio bursts (FRBs) are bright, coherent, short-duration radio transients of as-yet unknown extragalactic origin. FRBs exhibit a wide variety of spectral, temporal and polarimetric properties, which can unveil clues into their emission physics a
Fast Radio Burst FRB 20180916B in its host galaxy SDSS J015800.28+654253.0 at 149 Mpc is by far the closest-known FRB with a robust host galaxy association. The source also exhibits a 16.35-day period in its bursting. Here we present optical and infr
Measuring radio emission from air showers offers a novel way to determine properties of the primary cosmic rays such as their mass and energy. Theory predicts that relativistic time compression effects lead to a ring of amplified emission which start
A repeating fast radio burst (FRB), FRB 20180916B (hereafter FRB 180916), was reported to have a 16.35-day period. This period might be related to a precession period. In this paper, we investigate two precession models to explain the periodic activi
We report on the lowest-frequency detection to date of three bursts from the fast radio burst FRB 180916, observed at 328 MHz with the Sardinia Radio Telescope (SRT). The SRT observed the periodic repeater FRB 180916 for five days from 2020 February