ﻻ يوجد ملخص باللغة العربية
Fast radio bursts (FRBs) are bright, coherent, short-duration radio transients of as-yet unknown extragalactic origin. FRBs exhibit a wide variety of spectral, temporal and polarimetric properties, which can unveil clues into their emission physics and propagation effects in the local medium. Here we present the high-time-resolution (down to 1 $mu$s) polarimetric properties of four 1.7-GHz bursts from the repeating FRB 20180916B, which were detected in voltage data during observations with the European VLBI Network (EVN). We observe a range of emission timescales spanning three orders of magnitude, with the shortest component width reaching 3-4 $mu$s (below which we are limited by scattering). This is the shortest timescale measured in any FRB, to date. We demonstrate that all four bursts are highly linearly polarised ($gtrsim 80%$), show no evidence for significant circular polarisation ($lesssim 15%$), and exhibit a constant polarisation position angle (PPA) during and between bursts. On short timescales ($lesssim 100$ $mu$s), however, there appear to be subtle (few degree) PPA variations across the burst profiles. These observational results are most naturally explained in an FRB model where the emission is magnetospheric in origin, as opposed to models where the emission originates at larger distances in a relativistic shock.
Fast Radio Burst FRB 20180916B in its host galaxy SDSS J015800.28+654253.0 at 149 Mpc is by far the closest-known FRB with a robust host galaxy association. The source also exhibits a 16.35-day period in its bursting. Here we present optical and infr
The observed Fast Radio Burst (FRB) population can be divided into one-off and repeating FRB sources. Either this division is a true dichotomy of the underlying sources, or selection effects and low activity prohibit us from observing repeat pulses f
A repeating fast radio burst (FRB), FRB 20180916B (hereafter FRB 180916), was reported to have a 16.35-day period. This period might be related to a precession period. In this paper, we investigate two precession models to explain the periodic activi
We report on the discovery and analysis of bursts from nine new repeating fast radio burst (FRB) sources found using the Canadian Hydrogen Intensity Mapping Experiment (CHIME) telescope. These sources span a dispersion measure (DM) range of 195 to 13
The discovery that at least some Fast Radio Bursts (FRBs) repeat has ruled out cataclysmic events as the progenitors of these particular bursts. FRB~121102 is the most well-studied repeating FRB but despite extensive monitoring of the source, no unde