ترغب بنشر مسار تعليمي؟ اضغط هنا

Relation-Aware Neighborhood Matching Model for Entity Alignment

130   0   0.0 ( 0 )
 نشر من قبل Yao Zhu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Entity alignment which aims at linking entities with the same meaning from different knowledge graphs (KGs) is a vital step for knowledge fusion. Existing research focused on learning embeddings of entities by utilizing structural information of KGs for entity alignment. These methods can aggregate information from neighboring nodes but may also bring noise from neighbors. Most recently, several researchers attempted to compare neighboring nodes in pairs to enhance the entity alignment. However, they ignored the relations between entities which are also important for neighborhood matching. In addition, existing methods paid less attention to the positive interactions between the entity alignment and the relation alignment. To deal with these issues, we propose a novel Relation-aware Neighborhood Matching model named RNM for entity alignment. Specifically, we propose to utilize the neighborhood matching to enhance the entity alignment. Besides comparing neighbor nodes when matching neighborhood, we also try to explore useful information from the connected relations. Moreover, an iterative framework is designed to leverage the positive interactions between the entity alignment and the relation alignment in a semi-supervised manner. Experimental results on three real-world datasets demonstrate that the proposed model RNM performs better than state-of-the-art methods.



قيم البحث

اقرأ أيضاً

We study the problem of embedding-based entity alignment between knowledge graphs (KGs). Previous works mainly focus on the relational structure of entities. Some further incorporate another type of features, such as attributes, for refinement. Howev er, a vast of entity features are still unexplored or not equally treated together, which impairs the accuracy and robustness of embedding-based entity alignment. In this paper, we propose a novel framework that unifies multiple views of entities to learn embeddings for entity alignment. Specifically, we embed entities based on the views of entity names, relations and attributes, with several combination strategies. Furthermore, we design some cross-KG inference methods to enhance the alignment between two KGs. Our experiments on real-world datasets show that the proposed framework significantly outperforms the state-of-the-art embedding-based entity alignment methods. The selected views, cross-KG inference and combination strategies all contribute to the performance improvement.
Exploring fine-grained relationship between entities(e.g. objects in image or words in sentence) has great contribution to understand multimedia content precisely. Previous attention mechanism employed in image-text matching either takes multiple sel f attention steps to gather correspondences or uses image objects (or words) as context to infer image-text similarity. However, they only take advantage of semantic information without considering that objects relative position also contributes to image understanding. To this end, we introduce a novel position-aware relation module to model both the semantic and spatial relationship simultaneously for image-text matching in this paper. Given an image, our method utilizes the location of different objects to capture spatial relationship innovatively. With the combination of semantic and spatial relationship, its easier to understand the content of different modalities (images and sentences) and capture fine-grained latent correspondences of image-text pairs. Besides, we employ a two-step aggregated relation module to capture interpretable alignment of image-text pairs. The first step, we call it intra-modal relation mechanism, in which we computes responses between different objects in an image or different words in a sentence separately; The second step, we call it inter-modal relation mechanism, in which the query plays a role of textual context to refine the relationship among object proposals in an image. In this way, our position-aware aggregated relation network (ParNet) not only knows which entities are relevant by attending on different objects (words) adaptively, but also adjust the inter-modal correspondence according to the latent alignments according to querys content. Our approach achieves the state-of-the-art results on MS-COCO dataset.
125 - Xin Mao , Wenting Wang , Huimin Xu 2020
Entity alignment aims to identify equivalent entity pairs from different Knowledge Graphs (KGs), which is essential in integrating multi-source KGs. Recently, with the introduction of GNNs into entity alignment, the architectures of recent models hav e become more and more complicated. We even find two counter-intuitive phenomena within these methods: (1) The standard linear transformation in GNNs is not working well. (2) Many advanced KG embedding models designed for link prediction task perform poorly in entity alignment. In this paper, we abstract existing entity alignment methods into a unified framework, Shape-Builder & Alignment, which not only successfully explains the above phenomena but also derives two key criteria for an ideal transformation operation. Furthermore, we propose a novel GNNs-based method, Relational Reflection Entity Alignment (RREA). RREA leverages Relational Reflection Transformation to obtain relation specific embeddings for each entity in a more efficient way. The experimental results on real-world datasets show that our model significantly outperforms the state-of-the-art methods, exceeding by 5.8%-10.9% on Hits@1.
Knowledge graph models world knowledge as concepts, entities, and the relationships between them, which has been widely used in many real-world tasks. CCKS 2019 held an evaluation track with 6 tasks and attracted more than 1,600 teams. In this paper, we give an overview of the knowledge graph evaluation tract at CCKS 2019. By reviewing the task definition, successful methods, useful resources, good strategies and research challenges associated with each task in CCKS 2019, this paper can provide a helpful reference for developing knowledge graph applications and conducting future knowledge graph researches.
Seeking the equivalent entities among multi-source Knowledge Graphs (KGs) is the pivotal step to KGs integration, also known as emph{entity alignment} (EA). However, most existing EA methods are inefficient and poor in scalability. A recent summary p oints out that some of them even require several days to deal with a dataset containing 200,000 nodes (DWY100K). We believe over-complex graph encoder and inefficient negative sampling strategy are the two main reasons. In this paper, we propose a novel KG encoder -- Dual Attention Matching Network (Dual-AMN), which not only models both intra-graph and cross-graph information smartly, but also greatly reduces computational complexity. Furthermore, we propose the Normalized Hard Sample Mining Loss to smoothly select hard negative samples with reduced loss shift. The experimental results on widely used public datasets indicate that our method achieves both high accuracy and high efficiency. On DWY100K, the whole running process of our method could be finished in 1,100 seconds, at least 10* faster than previous work. The performances of our method also outperform previous works across all datasets, where Hits@1 and MRR have been improved from 6% to 13%.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا