ترغب بنشر مسار تعليمي؟ اضغط هنا

Relational Reflection Entity Alignment

126   0   0.0 ( 0 )
 نشر من قبل Xin Mao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Entity alignment aims to identify equivalent entity pairs from different Knowledge Graphs (KGs), which is essential in integrating multi-source KGs. Recently, with the introduction of GNNs into entity alignment, the architectures of recent models have become more and more complicated. We even find two counter-intuitive phenomena within these methods: (1) The standard linear transformation in GNNs is not working well. (2) Many advanced KG embedding models designed for link prediction task perform poorly in entity alignment. In this paper, we abstract existing entity alignment methods into a unified framework, Shape-Builder & Alignment, which not only successfully explains the above phenomena but also derives two key criteria for an ideal transformation operation. Furthermore, we propose a novel GNNs-based method, Relational Reflection Entity Alignment (RREA). RREA leverages Relational Reflection Transformation to obtain relation specific embeddings for each entity in a more efficient way. The experimental results on real-world datasets show that our model significantly outperforms the state-of-the-art methods, exceeding by 5.8%-10.9% on Hits@1.



قيم البحث

اقرأ أيضاً

We study the problem of embedding-based entity alignment between knowledge graphs (KGs). Previous works mainly focus on the relational structure of entities. Some further incorporate another type of features, such as attributes, for refinement. Howev er, a vast of entity features are still unexplored or not equally treated together, which impairs the accuracy and robustness of embedding-based entity alignment. In this paper, we propose a novel framework that unifies multiple views of entities to learn embeddings for entity alignment. Specifically, we embed entities based on the views of entity names, relations and attributes, with several combination strategies. Furthermore, we design some cross-KG inference methods to enhance the alignment between two KGs. Our experiments on real-world datasets show that the proposed framework significantly outperforms the state-of-the-art embedding-based entity alignment methods. The selected views, cross-KG inference and combination strategies all contribute to the performance improvement.
84 - Jay Pujara , Lise Getoor 2016
Entity resolution, the problem of identifying the underlying entity of references found in data, has been researched for many decades in many communities. A common theme in this research has been the importance of incorporating relational features in to the resolution process. Relational entity resolution is particularly important in knowledge graphs (KGs), which have a regular structure capturing entities and their interrelationships. We identify three major problems in KG entity resolution: (1) intra-KG reference ambiguity; (2) inter-KG reference ambiguity; and (3) ambiguity when extending KGs with new facts. We implement a framework that generalizes across these three settings and exploits this regular structure of KGs. Our framework has many advantages over custom solutions widely deployed in industry, including collective inference, scalability, and interpretability. We apply our framework to two real-world KG entity resolution problems, ambiguity in NELL and merging data from Freebase and MusicBrainz, demonstrating the importance of relational features.
In this research, we improve upon the current state of the art in entity retrieval by re-ranking the result list using graph embeddings. The paper shows that graph embeddings are useful for entity-oriented search tasks. We demonstrate empirically tha t encoding information from the knowledge graph into (graph) embeddings contributes to a higher increase in effectiveness of entity retrieval results than using plain word embeddings. We analyze the impact of the accuracy of the entity linker on the overall retrieval effectiveness. Our analysis further deploys the cluster hypothesis to explain the observed advantages of graph embeddings over the more widely used word embeddings, for user tasks involving ranking entities.
Much of human knowledge is encoded in text, available in scientific publications, books, and the web. Given the rapid growth of these resources, we need automated methods to extract such knowledge into machine-processable structures, such as knowledg e graphs. An important task in this process is entity normalization, which consists of mapping noisy entity mentions in text to canonical entities in well-known reference sets. However, entity normalization is a challenging problem; there often are many textual forms for a canonical entity that may not be captured in the reference set, and entities mentioned in text may include many syntactic variations, or errors. The problem is particularly acute in scientific domains, such as biology. To address this problem, we have developed a general, scalable solution based on a deep Siamese neural network model to embed the semantic information about the entities, as well as their syntactic variations. We use these embeddings for fast mapping of new entities to large reference sets, and empirically show the effectiveness of our framework in challenging bio-entity normalization datasets.
Recently developed deep learning models are able to learn to segment scenes into component objects without supervision. This opens many new and exciting avenues of research, allowing agents to take objects (or entities) as inputs, rather that pixels. Unfortunately, while these models provide excellent segmentation of a single frame, they do not keep track of how objects segmented at one time-step correspond (or align) to those at a later time-step. The alignment (or correspondence) problem has impeded progress towards using object representations in downstream tasks. In this paper we take steps towards solving the alignment problem, presenting the AlignNet, an unsupervised alignment module.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا