ﻻ يوجد ملخص باللغة العربية
Deep speaker embedding models have been commonly used as a building block for speaker diarization systems; however, the speaker embedding model is usually trained according to a global loss defined on the training data, which could be sub-optimal for distinguishing speakers locally in a specific meeting session. In this work we present the first use of graph neural networks (GNNs) for the speaker diarization problem, utilizing a GNN to refine speaker embeddings locally using the structural information between speech segments inside each session. The speaker embeddings extracted by a pre-trained model are remapped into a new embedding space, in which the different speakers within a single session are better separated. The model is trained for linkage prediction in a supervised manner by minimizing the difference between the affinity matrix constructed by the refined embeddings and the ground-truth adjacency matrix. Spectral clustering is then applied on top of the refined embeddings. We show that the clustering performance of the refined speaker embeddings outperforms the original embeddings significantly on both simulated and real meeting data, and our system achieves the state-of-the-art result on the NIST SRE 2000 CALLHOME database.
Speaker Diarization is the problem of separating speakers in an audio. There could be any number of speakers and final result should state when speaker starts and ends. In this project, we analyze given audio file with 2 channels and 2 speakers (on s
This work presents a novel approach for speaker diarization to leverage lexical information provided by automatic speech recognition. We propose a speaker diarization system that can incorporate word-level speaker turn probabilities with speaker embe
This paper proposes novel algorithms for speaker embedding using subjective inter-speaker similarity based on deep neural networks (DNNs). Although conventional DNN-based speaker embedding such as a $d$-vector can be applied to multi-speaker modeling
Speaker diarization is one of the actively researched topics in audio signal processing and machine learning. Utterance clustering is a critical part of a speaker diarization task. In this study, we aim to improve the performance of utterance cluster
Speaker diarization relies on the assumption that speech segments corresponding to a particular speaker are concentrated in a specific region of the speaker space; a region which represents that speakers identity. These identities are not known a pri