ﻻ يوجد ملخص باللغة العربية
This article introduces a novel protein structure alignment method (named TALI) based on the protein backbone torsion angle instead of the more traditional distance matrix. Because the structural alignment of the two proteins is based on the comparison of two sequences of numbers (backbone torsion angles), we can take advantage of a large number of well-developed methods such as Smith-Waterman or Needleman-Wunsch. Here we report the result of TALI in comparison to other structure alignment methods such as DALI, CE, and SSM ass well as sequence alignment based on PSI-BLAST. TALI demonstrated great success over all other methods in application to challenging proteins. TALI was more successful in recognizing remote structural homology. TALI also demonstrated an ability to identify structural homology between two proteins where the structural difference was due to a rotation of internal domains by nearly 180$^circ$.
Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been
Background. Protein dihedral angles provide a detailed description of protein local conformation. Predicted dihedral angles can be used to narrow down the conformational space of the whole polypeptide chain significantly, thus aiding protein tertiary
Identifying novel functional protein structures is at the heart of molecular engineering and molecular biology, requiring an often computationally exhaustive search. We introduce the use of a Deep Convolutional Generative Adversarial Network (DCGAN)
Associative memory Hamiltonian structure prediction potentials are not overly rugged, thereby suggesting their landscapes are like those of actual proteins. In the present contribution we show how basin-hopping global optimization can identify low-ly
Coarse-graining is a powerful tool for extending the reach of dynamic models of proteins and other biological macromolecules. Topological coarse-graining, in which biomolecules or sets thereof are represented via graph structures, is a particularly u