ترغب بنشر مسار تعليمي؟ اضغط هنا

Protein Structure Prediction Using Basin-Hopping

173   0   0.0 ( 0 )
 نشر من قبل Michael Prentiss
 تاريخ النشر 2008
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Associative memory Hamiltonian structure prediction potentials are not overly rugged, thereby suggesting their landscapes are like those of actual proteins. In the present contribution we show how basin-hopping global optimization can identify low-lying minima for the corresponding mildly frustrated energy landscapes. For small systems the basin-hopping algorithm succeeds in locating both lower minima and conformations closer to the experimental structure than does molecular dynamics with simulated annealing. For large systems the efficiency of basin-hopping decreases for our initial implementation, where the steps consist of random perturbations to the Cartesian coordinates. We implemented umbrella sampling using basin-hopping to further confirm when the global minima are reached. We have also improved the energy surface by employing bioinformatic techniques for reducing the roughness or variance of the energy surface. Finally, the basin-hopping calculations have guided improvements in the excluded volume of the Hamiltonian, producing better structures. These results suggest a novel and transferable optimization scheme for future energy function development.



قيم البحث

اقرأ أيضاً

Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.
Protein-RNA interactions are of vital importance to a variety of cellular activities. Both experimental and computational techniques have been developed to study the interactions. Due to the limitation of the previous database, especially the lack of protein structure data, most of the existing computational methods rely heavily on the sequence data, with only a small portion of the methods utilizing the structural information. Recently, AlphaFold has revolutionized the entire protein and biology field. Foreseeably, the protein-RNA interaction prediction will also be promoted significantly in the upcoming years. In this work, we give a thorough review of this field, surveying both the binding site and binding preference prediction problems and covering the commonly used datasets, features, and models. We also point out the potential challenges and opportunities in this field. This survey summarizes the development of the RBP-RNA interaction field in the past and foresees its future development in the post-AlphaFold era.
This article introduces a novel protein structure alignment method (named TALI) based on the protein backbone torsion angle instead of the more traditional distance matrix. Because the structural alignment of the two proteins is based on the comparis on of two sequences of numbers (backbone torsion angles), we can take advantage of a large number of well-developed methods such as Smith-Waterman or Needleman-Wunsch. Here we report the result of TALI in comparison to other structure alignment methods such as DALI, CE, and SSM ass well as sequence alignment based on PSI-BLAST. TALI demonstrated great success over all other methods in application to challenging proteins. TALI was more successful in recognizing remote structural homology. TALI also demonstrated an ability to identify structural homology between two proteins where the structural difference was due to a rotation of internal domains by nearly 180$^circ$.
Background: Typically, proteins perform key biological functions by interacting with each other. As a consequence, predicting which protein pairs interact is a fundamental problem. Experimental methods are slow, expensive, and may be error prone. Man y computational methods have been proposed to identify candidate interacting pairs. When accurate, they can serve as an inexpensive, preliminary filtering stage, to be followed by downstream experimental validation. Among such methods, sequence-based ones are very promising. Results: We present MPS(T&B) (Maximum Protein Similarity Topological and Biological), a new algorithm that leverages both topological and biological information to predict protein-protein interactions. We comprehensively compare MPS(T) and MPS(T&B) with state-of-the-art approaches on reliable PPIs datasets, showing that they have competitive or higher accuracy on biologically validated test sets. Conclusion: MPS(T) and MPS(T&B) are topological only and topological plus sequence-based computational methods that can effectively predict the entire human interactome.
Identifying novel functional protein structures is at the heart of molecular engineering and molecular biology, requiring an often computationally exhaustive search. We introduce the use of a Deep Convolutional Generative Adversarial Network (DCGAN) to classify protein structures based on their functionality by encoding each sample in a grid object structure using three features in each object: the generic atom type, the position atom type, and its occupancy relative to a given atom. We train DCGAN on 3-dimensional (3D) decoy and native protein structures in order to generate and discriminate 3D protein structures. At the end of our training, loss converges to a local minimum and our DCGAN can annotate functional proteins robustly against adversarial protein samples. In the future we hope to extend the novel structures we found from the generator in our DCGAN with more samples to explore more granular functionality with varying functions. We hope that our effort will advance the field of protein structure prediction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا