ترغب بنشر مسار تعليمي؟ اضغط هنا

H$_2$ mass-velocity relationship from 3D numerical simulations of jet-driven molecular outflows

96   0   0.0 ( 0 )
 نشر من قبل Adriano Cerqueira
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Previous numerical studies have shown that in protostellar outflows, the mass-velocity distribution $m(v)$ can be well described by a broken power law $propto v^{- gamma}$. On the other hand, recent observations of a sample of outflows show that the CO intensity-velocity distribution, closely related to $m(v)$, follows an exponential law $propto exp(-v/v_0)$. In the present work, we revisit the physical origin of the mass-velocity relationship $m(v)$ in jet-driven protostellar outflows. We investigate the respective contributions of the different regions of the outflow, from the swept-up ambient gas to the jet. We performed 3D numerical simulations of a protostellar jet propagating into a molecular cloud using the hydrodynamical code Yguazu-a. The code takes into account atomic and ionic species and was modified to include the H$_2$ gas. We find that by excluding the jet contribution, $m(v)$ is satisfyingly fitted with a single exponential law, with $v_0$ well in the range of observational values. The jet contribution results in additional components in the mass-velocity relationship. This empirical mass-velocity relationship is found to be valid locally in the outflow. The exponent $v_0$ is almost constant in time and for a given level of mixing between the ambient medium and the jet material. In general, $v_0$ displays only a weak spatial dependence. A simple modeling of the L1157 outflow successfully reproduces the various components of the observed CO intensity-velocity relationship. Our simulations indicate that these components trace the outflow cavity of swept-up gas and the material entrained along the jet, respectively. The CO intensity-velocity exponential law is naturally explained by the jet-driven outflow model. The entrained material plays an important role in shaping the mass-velocity profile.



قيم البحث

اقرأ أيضاً

We report full polarimetric VLBA observations of water masers towards the Turner-Welch Object in the W3(OH) high-mass star forming complex. This object drives a synchrotron jet, which is quite exceptional for a high-mass protostar, and is associated with a strongly polarized water maser source, W3(H$_2$O), making it an optimal target to investigate the role of magnetic fields on the innermost scales of protostellar disk-jet systems. The linearly polarized emission from water masers provides clues on the orientation of the local magnetic field, while the measurement of the Zeeman splitting from circular polarization provides its strength. The water masers trace a bipolar, biconical outflow at the center of the synchrotron jet. Although on scales of a few thousand AU the magnetic field inferred from the masers is on average orientated along the flow axis, on smaller scales (10s to 100s of AU), we have revealed a misalignment between the magnetic field and the velocity vectors, which arises from the compression of the field component along the shock front. Our measurements support a scenario where the magnetic field would evolve from having a dominant component parallel to the outflow velocity in the pre-shock gas, with field strengths of the order of a few tens of mG (at densities of $10^7$ cm$^{-3}$), to being mainly dominated by the perpendicular component of order of a few hundred of mG in the post-shock gas where the water masers are excited (at densities of $10^9$ cm$^{-3}$). The general implication is that in the undisturbed (i.e. not-shocked) circumstellar gas, the flow velocities would follow closely the magnetic field lines, while in the gas shocked by the prostostellar jet the magnetic field would be re-configured to be parallel to the shock front.
We compute 3D gasdynamical models of jet outflows from the central AGN, that carry mass as well as energy to the hot gas in galaxy clusters and groups. These flows have many attractive attributes for solving the cooling flow problem: why the hot gas temperature and density profiles resemble cooling flows but show no spectral evidence of cooling to low temperatures. Subrelativistic jets, described by a few parameters, are assumed to be activated when gas flows toward or cools near a central SMBH. Using approximate models for a rich cluster (A1795), a poor cluster (2A 0336+096) and a group (NGC 5044), we show that mass-carrying jets with intermediate mechanical efficiencies ($sim10^{-3}$) can reduce for many Gyr the global cooling rate to or below the low values implied by X-spectra, while maintaining $T$ and $rho$ profiles similar to those observed, at least in clusters. Groups are much more sensitive to AGN heating and present extreme time variability in both profiles. Finally, the intermittency of the feedback generates multiple generations of X-ray cavities similar to those observed in Perseus cluster and elsewhere. Thus we also study the formation of buoyant bubbles and weak shocks in the ICM, along with the injection of metals by SNIa and stellar winds.
Young massive stars are usually found embedded in dense and massive molecular clumps and are known for being highly obscured and distant. During their formation process, deuteration is regarded as a potentially good indicator of the formation stage. Therefore, proper observations of such deuterated molecules are crucial, but still, hard to perform. In this work, we test the observability of the transition o-H$_2$D$^+(1_{10}$-$1_{11})$, using a synthetic source, to understand how the physical characteristics are reflected in observations through interferometers and single-dish telescopes. In order to perform such tests, we post-processed a magneto-hydrodynamic simulation of a collapsing magnetized core using the radiative transfer code POLARIS. Using the resulting intensity distributions as input, we performed single-dish (APEX) and interferometric (ALMA) synthetic observations at different evolutionary times, always mimicking realistic configurations. Finally, column densities were derived to compare our simulations with real observations previously performed. Our derivations for o-H$_2$D$^+$ are in agreement with values reported in the literature, in the range of 10$^{!10-11}$cm$^{!-2}$ and 10$^{!12-13}$cm$^{!-2}$ for single-dish and interferometric measurements, respectively.
(Abridged) We present a large sample of o-H$_2$D$^+$ observations in high-mass star-forming regions and discuss possible empirical correlations with relevant physical quantities to assess its role as a chronometer of star-forming regions through diff erent evolutionary stages. APEX observations of the ground-state transition of o-H$_2$D$^+$ were analysed in a sample of massive clumps selected from ATLASGAL at different evolutionary stages. Column densities and beam-averaged abundances of o-H$_2$D$^+$ with respect to H$_2$, $X$(o-H$_2$D$^+$), were obtained by modelling the spectra under the assumption of local thermodynamic equilibrium. We detect 16 sources in o-H$_2$D$^+$ and find clear correlations between $X$(o-H$_2$D$^+$) and the clump bolometric luminosity and the dust temperature, while only a mild correlation is found with the CO-depletion factor. In addition, we see a clear correlation with the luminosity-to-mass ratio, which is known to trace the evolution of the star formation process. This would indicate that the deuterated forms of H$_3^+$ are more abundant in the early stages of the star formation process and that deuteration is influenced by the time evolution of the clumps. In this respect, our findings would suggest that the $X$(o-H$_2$D$^+$) abundance is mainly affected by the thermal changes rather than density changes in the gas. We have employed these findings together with observations of H$^{13}$CO$^+$, DCO$^+$, and C$^{17}$O to provide an estimate of the cosmic-ray ionisation rate in a sub-sample of eight clumps based on recent analytical work. Our study presents the largest sample of o-H$_2$D$^+$ in star-forming regions to date. The results confirm that the deuteration process is strongly affected by temperature and suggests that o-H$_2$D$^+$ can be considered a reliable chemical clock during the star formation processes, as proved by its strong temporal dependence.
We present a spatio-kinematical analysis of the CO~($J$=2$rightarrow$1) line emission, observed with the Atacama Large Millimter/submillimter Array (ALMA), of the outflow associated with the most massive core, ALMA1, in the 70 $mu$m dark clump G010.9 91$-$00.082. The position-velocity (P-V) diagram of the molecular outflow exhibits a peculiar $mathsf{S}$-shaped morphology that has not been seen in any other star forming region. We propose a spatio-kinematical model for the bipolar molecular outflow that consists of a decelerating high-velocity component surrounded by a slower component whose velocity increases with distance from the central source. The physical interpretation of the model is in terms of a jet that decelerates as it entrains material from the ambient medium, which has been predicted by calculations and numerical simulations of molecular outflows in the past. One side of the outflow is shorter and shows a stronger deceleration, suggesting that the medium through which the jet moves is significantly inhomogeneous. The age of the outflow is estimated to be $tau$$approx$1300 years, after correction for a mean inclination of the system of $approx$57$^{circ}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا