ﻻ يوجد ملخص باللغة العربية
We compute 3D gasdynamical models of jet outflows from the central AGN, that carry mass as well as energy to the hot gas in galaxy clusters and groups. These flows have many attractive attributes for solving the cooling flow problem: why the hot gas temperature and density profiles resemble cooling flows but show no spectral evidence of cooling to low temperatures. Subrelativistic jets, described by a few parameters, are assumed to be activated when gas flows toward or cools near a central SMBH. Using approximate models for a rich cluster (A1795), a poor cluster (2A 0336+096) and a group (NGC 5044), we show that mass-carrying jets with intermediate mechanical efficiencies ($sim10^{-3}$) can reduce for many Gyr the global cooling rate to or below the low values implied by X-spectra, while maintaining $T$ and $rho$ profiles similar to those observed, at least in clusters. Groups are much more sensitive to AGN heating and present extreme time variability in both profiles. Finally, the intermittency of the feedback generates multiple generations of X-ray cavities similar to those observed in Perseus cluster and elsewhere. Thus we also study the formation of buoyant bubbles and weak shocks in the ICM, along with the injection of metals by SNIa and stellar winds.
It is now widely accepted that heating processes play a fundamental role in galaxy clusters, struggling in an intricate but fascinating `dance with its antagonist, radiative cooling. Last generation observations, especially X-ray, are giving us tiny
We assess the importance of AGN outflows with respect to the metal enrichment of the intracluster medium (ICM) in galaxy clusters. We use combined N-body and hydrodynamic simulations, along with a semi-numerical galaxy formation and evolution model.
AGN heating, through massive subrelativistic outflows, might be the key to solve the long-lasting `cooling flow problem in cosmological systems. In a previous paper, we showed that cold accretion feedback and, to a lesser degree, Bondi self-regulated
Previous numerical studies have shown that in protostellar outflows, the mass-velocity distribution $m(v)$ can be well described by a broken power law $propto v^{- gamma}$. On the other hand, recent observations of a sample of outflows show that the
Using Chandra data for a sample of 26 galaxy groups, we constrained the central cooling times (CCTs) of the ICM and classified the groups as strong cool-core (SCC), weak cool-core (WCC) and non-cool-core (NCC) based on their CCTs. The total radio lum