ﻻ يوجد ملخص باللغة العربية
With the advent of interferometric instruments with 4 telescopes at the VLTI and 6 telescopes at CHARA, the scientific possibility arose to routinely obtain milli-arcsecond scale images of the observed targets. Such an image reconstruction process is typically performed in a Bayesian framework where the function to minimize is made of two terms: the datalikelihood and the Bayesian prior. This prior should be based on our prior knowledge of the observed source. Up to now,this prior was chosen from a set of generic and arbitrary functions, such as total variation for example. Here, we present an image reconstruction framework using generative adversarial networks where the Bayesian prior is defined using state-of-the-art radiative transfer models of the targeted objects. We validate this new image reconstruction algorithm on synthetic data with added noise. The generated images display a drastic reduction of artefacts and allow a more straight forward astrophysical interpretation. The results can be seen as a first illustration of how neural networks can provide significant improvements to the image reconstruction of a variety of astrophysical sources.
This paper presents a novel deformable registration framework, leveraging an image prior specified through a denoising function, for severely noise-corrupted placental images. Recent work on plug-and-play (PnP) priors has shown the state-of-the-art p
Image restoration has seen great progress in the last years thanks to the advances in deep neural networks. Most of these existing techniques are trained using full supervision with suitable image pairs to tackle a specific degradation. However, in a
Isotropic Gaussian priors are the de facto standard for modern Bayesian neural network inference. However, such simplistic priors are unlikely to either accurately reflect our true beliefs about the weight distributions, or to give optimal performanc
PET image reconstruction is challenging due to the ill-poseness of the inverse problem and limited number of detected photons. Recently deep neural networks have been widely and successfully used in computer vision tasks and attracted growing interes
Multimode fibers (MMFs) have the potential to carry complex images for endoscopy and related applications, but decoding the complex speckle patterns produced by mode-mixing and modal dispersion in MMFs is a serious challenge. Several groups have rece