ترغب بنشر مسار تعليمي؟ اضغط هنا

Plug-and-Play Priors for Reconstruction-based Placental Image Registration

126   0   0.0 ( 0 )
 نشر من قبل Jiarui Xing
 تاريخ النشر 2019
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents a novel deformable registration framework, leveraging an image prior specified through a denoising function, for severely noise-corrupted placental images. Recent work on plug-and-play (PnP) priors has shown the state-of-the-art performance of reconstruction algorithms under such priors in a range of imaging applications. Integration of powerful image denoisers into advanced registration methods provides our model with a flexibility to accommodate datasets that have low signal-to-noise ratios (SNRs). We demonstrate the performance of our method under a wide variety of denoising models in the context of diffeomorphic image registration. Experimental results show that our model substantially improves the accuracy of spatial alignment in applications of 3D in-utero diffusion-weighted MR images (DW-MRI) that suffer from low SNR and large spatial transformations.



قيم البحث

اقرأ أيضاً

Fast data acquisition in Magnetic Resonance Imaging (MRI) is vastly in demand and scan time directly depends on the number of acquired k-space samples. Conventional MRI reconstruction methods for fast MRI acquisition mostly relied on different regula rizers which represent analytical models of sparsity. However, recent data-driven methods based on deep learning has resulted in promising improvements in image reconstruction algorithms. In this paper, we propose a deep plug-and-play prior framework for parallel MRI reconstruction problems which utilize a deep neural network (DNN) as an advanced denoiser within an iterative method. This, in turn, enables rapid acquisition of MR images with improved image quality. The proposed method was compared with the reconstructions using the clinical gold standard GRAPPA method. Our results with undersampled data demonstrate that our method can deliver considerably higher quality images at high acceleration factors in comparison to clinical gold standard method for MRI reconstructions. Our proposed reconstruction enables an increase in acceleration factor, and a reduction in acquisition time while maintaining high image quality.
230 - Xiaojian Xu , Jiaming Liu , Yu Sun 2020
Plug-and-play priors (PnP) is an image reconstruction framework that uses an image denoiser as an imaging prior. Unlike traditional regularized inversion, PnP does not require the prior to be expressible in the form of a regularization function. This flexibility enables PnP algorithms to exploit the most effective image denoisers, leading to their state-of-the-art performance in various imaging tasks. In this paper, we propose a new denoiser scaling technique to explicitly control the amount of PnP regularization. Traditionally, the performance of PnP algorithms is controlled via intrinsic parameters of the denoiser related to the noise variance. However, many powerful denoisers, such as the ones based on convolutional neural networks (CNNs), do not have tunable parameters that would allow controlling their influence within PnP. To address this issue, we introduce a scaling parameter that adjusts the magnitude of the denoiser input and output. We theoretical justify the denoiser scaling from the perspectives of proximal optimization, statistical estimation, and consensus equilibrium. Finally, we provide numerical experiments demonstrating the ability of denoiser scaling to systematically improve the performance of PnP for denoising CNN priors that do not have explicitly tunable parameters.
Deep segmentation models that generalize to images with unknown appearance are important for real-world medical image analysis. Retraining models leads to high latency and complex pipelines, which are impractical in clinical settings. The situation b ecomes more severe for ultrasound image analysis because of their large appearance shifts. In this paper, we propose a novel method for robust segmentation under unknown appearance shifts. Our contribution is three-fold. First, we advance a one-stage plug-and-play solution by embedding hierarchical style transfer units into a segmentation architecture. Our solution can remove appearance shifts and perform segmentation simultaneously. Second, we adopt Dynamic Instance Normalization to conduct precise and dynamic style transfer in a learnable manner, rather than previously fixed style normalization. Third, our solution is fast and lightweight for routine clinical adoption. Given 400*400 image input, our solution only needs an additional 0.2ms and 1.92M FLOPs to handle appearance shifts compared to the baseline pipeline. Extensive experiments are conducted on a large dataset from three vendors demonstrate our proposed method enhances the robustness of deep segmentation models.
156 - Xin Yuan , Yang Liu , Jinli Suo 2021
We consider the reconstruction problem of video snapshot compressive imaging (SCI), which captures high-speed videos using a low-speed 2D sensor (detector). The underlying principle of SCI is to modulate sequential high-speed frames with different ma sks and then these encoded frames are integrated into a snapshot on the sensor and thus the sensor can be of low-speed. On one hand, video SCI enjoys the advantages of low-bandwidth, low-power and low-cost. On the other hand, applying SCI to large-scale problems (HD or UHD videos) in our daily life is still challenging and one of the bottlenecks lies in the reconstruction algorithm. Exiting algorithms are either too slow (iterative optimization algorithms) or not flexible to the encoding process (deep learning based end-to-end networks). In this paper, we develop fast and flexible algorithms for SCI based on the plug-and-play (PnP) framework. In addition to the PnP-ADMM method, we further propose the PnP-GAP (generalized alternating projection) algorithm with a lower computational workload. We first employ the image deep denoising priors to show that PnP can recover a UHD color video with 30 frames from a snapshot measurement. Since videos have strong temporal correlation, by employing the video deep denoising priors, we achieve a significant improvement in the results. Furthermore, we extend the proposed PnP algorithms to the color SCI system using mosaic sensors, where each pixel only captures the red, green or blue channels. A joint reconstruction and demosaicing paradigm is developed for flexible and high quality reconstruction of color video SCI systems. Extensive results on both simulation and real datasets verify the superiority of our proposed algorithm.
104 - Xin Yuan , Yang Liu , Jinli Suo 2020
Snapshot compressive imaging (SCI) aims to capture the high-dimensional (usually 3D) images using a 2D sensor (detector) in a single snapshot. Though enjoying the advantages of low-bandwidth, low-power and low-cost, applying SCI to large-scale proble ms (HD or UHD videos) in our daily life is still challenging. The bottleneck lies in the reconstruction algorithms; they are either too slow (iterative optimization algorithms) or not flexible to the encoding process (deep learning based end-to-end networks). In this paper, we develop fast and flexible algorithms for SCI based on the plug-and-play (PnP) framework. In addition to the widely used PnP-ADMM method, we further propose the PnP-GAP (generalized alternating projection) algorithm with a lower computational workload and prove the convergence of PnP-GAP under the SCI hardware constraints. By employing deep denoising priors, we first time show that PnP can recover a UHD color video ($3840times 1644times 48$ with PNSR above 30dB) from a snapshot 2D measurement. Extensive results on both simulation and real datasets verify the superiority of our proposed algorithm. The code is available at https://github.com/liuyang12/PnP-SCI.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا