ﻻ يوجد ملخص باللغة العربية
In this paper, we present an approach to tactile pose estimation from the first touch for known objects. First, we create an object-agnostic map from real tactile observations to contact shapes. Next, for a new object with known geometry, we learn a tailored perception model completely in simulation. To do so, we simulate the contact shapes that a dense set of object poses would produce on the sensor. Then, given a new contact shape obtained from the sensor output, we match it against the pre-computed set using the object-specific embedding learned purely in simulation using contrastive learning. This results in a perception model that can localize objects from a single tactile observation. It also allows reasoning over pose distributions and including additional pose constraints coming from other perception systems or multiple contacts. We provide quantitative results for four objects. Our approach provides high accuracy pose estimations from distinctive tactile observations while regressing pose distributions to account for those contact shapes that could result from different object poses. We further extend and test our approach in multi-contact scenarios where several tactile sensors are simultaneously in contact with the object. Website: http://mcube.mit.edu/research/tactile_loc_first_touch.html
This article describes a new way of controlling robots using soft tactile sensors: pose-based tactile servo (PBTS) control. The basic idea is to embed a tactile perception model for estimating the sensor pose within a servo control loop that is appli
Recently developed deep neural networks achieved state-of-the-art results in the subject of 6D object pose estimation for robot manipulation. However, those supervised deep learning methods require expensive annotated training data. Current methods f
This paper presents a novel framework for integration of vision and tactile sensing by localizing tactile readings in a visual object map. Intuitively, there are some correspondences, e.g., prominent features, between visual and tactile object identi
In essence, successful grasp boils down to correct responses to multiple contact events between fingertips and objects. In most scenarios, tactile sensing is adequate to distinguish contact events. Due to the nature of high dimensionality of tactile
Humans are adept at learning new tasks by watching a few instructional videos. On the other hand, robots that learn new actions either require a lot of effort through trial and error, or use expert demonstrations that are challenging to obtain. In th