ﻻ يوجد ملخص باللغة العربية
This article describes a new way of controlling robots using soft tactile sensors: pose-based tactile servo (PBTS) control. The basic idea is to embed a tactile perception model for estimating the sensor pose within a servo control loop that is applied to local object features such as edges and surfaces. PBTS control is implemented with a soft curved optical tactile sensor (the BRL TacTip) using a convolutional neural network trained to be insensitive to shear. In consequence, robust and accurate controlled motion over various complex 3D objects is attained. First, we review tactile servoing and its relation to visual servoing, before formalising PBTS control. Then, we assess tactile servoing over a range of regular and irregular objects. Finally, we reflect on the relation to visual servo control and discuss how controlled soft touch gives a route towards human-like dexterity in robots.
In this paper, we present an approach to tactile pose estimation from the first touch for known objects. First, we create an object-agnostic map from real tactile observations to contact shapes. Next, for a new object with known geometry, we learn a
This work investigates uncertainty-aware deep learning (DL) in tactile robotics based on a general framework introduced recently for robot vision. For a test scenario, we consider optical tactile sensing in combination with DL to estimate the edge po
This article illustrates the application of deep learning to robot touch by considering a basic yet fundamental capability: estimating the relative pose of part of an object in contact with a tactile sensor. We begin by surveying deep learning applie
Estimation of tactile properties from vision, such as slipperiness or roughness, is important to effectively interact with the environment. These tactile properties help us decide which actions we should choose and how to perform them. E.g., we can d
This paper describes an image based visual servoing (IBVS) system for a nonholonomic robot to achieve good trajectory following without real-time robot pose information and without a known visual map of the environment. We call it trajectory servoing