ﻻ يوجد ملخص باللغة العربية
We demonstrate that nuclear spin fluctuations lead to the electric current noise in the mesoscopic samples of organic semiconductors showing the pronounced magnetoresistance in weak fields. For the bipolaron and electron-hole mechanisms of organic magnetoresistance, the current noise spectrum consists of the high frequency peak related to the nuclear spin precession in the Knight field of the charge carriers and the low frequency peak related to the nuclear spin relaxation. The shape of the spectrum depends on the external magnetic and radiofrequency fields, which allows one to prove the role of nuclei in magnetoresistance experimentally.
In organic light emitting diodes with small area the current may be dominated by a finite number, N of sites in which the electron-hole recombination occurs. As a result, averaging over the hyperfine magnetic fields, b_h, that are generated in these
Superconducting wires with broken time-reversal and spin-rotational symmetries can exhibit two distinct topological gapped phases and host bound Majorana states at the phase boundaries. When the wire is tuned to the transition between these two phase
Using analytical arguments and computer simulations we show that the dependence of the hopping carrier mobility on the electric field $mu(F)/mu(0)$ in a system of random sites is determined by the localization length $a$, and not by the concentration
Different from traditional semiconductors, the organic semiconductors normally possess moderate many-body interactions with respect to charge, exciton, spin and phonons. In particular, the diagonal electron-phonon couplings give rise to the spatial l
We propose an extension of the Landauer-Buttiker scattering theory to include effects of interaction in the active region of a mesoscopic conductor structure. The current expression obtained coincides with those derived by different methods. A new ge