ﻻ يوجد ملخص باللغة العربية
Bang-Jensen, Bessy, Havet and Yeo showed that every digraph of independence number at most 2 and arc-connectivity at least 2 has an out-branching $B^+$ and an in-branching $B^-$ which are arc-disjoint (such two branchings are called a {it good pair}), which settled a conjecture of Thomassen for digraphs of independence number 2. They also proved that every digraph on at most 6 vertices and arc-connectivity at least 2 has a good pair and gave an example of a 2-arc-strong digraph $D$ on 10 vertices with independence number 4 that has no good pair. They asked for the smallest number $n$ of vertices in a 2-arc-strong digraph which has no good pair. In this paper, we prove that every digraph on at most 9 vertices and arc-connectivity at least 2 has a good pair, which solves this problem.
Hakimi and Schmeichel determined a sharp lower bound for the number of cycles of length 4 in a maximal planar graph with $n$ vertices, $ngeq 5$. It has been shown that the bound is sharp for $n = 5,12$ and $ngeq 14$ vertices. However, it was only con
We prove that every digraph of independence number at most 2 and arc-connectivity at least 2 has an out-branching $B^+$ and an in-branching $B^-$ which are arc-disjoint (we call such branchings good pair). This is best possible in terms of the arc-
Let $q_{min}(G)$ stand for the smallest eigenvalue of the signless Laplacian of a graph $G$ of order $n.$ This paper gives some results on the following extremal problem: How large can $q_minleft( Gright) $ be if $G$ is a graph of order $n,$ with n
This paper is devoted to the study of lower and upper bounds for the number of vertices of the polytope of $ntimes ntimes n$ stochastic tensors (i.e., triply stochastic arrays of dimension $n$). By using known results on polytopes (i.e., the Upper an
A basic combinatorial invariant of a convex polytope $P$ is its $f$-vector $f(P)=(f_0,f_1,dots,f_{dim P-1})$, where $f_i$ is the number of $i$-dimensional faces of $P$. Steinitz characterized all possible $f$-vectors of $3$-polytopes and Grunbaum cha